725 research outputs found

    X-Ray emission from SN 2004dj: A Tale of Two Shocks

    Full text link
    Type IIP (Plateau) Supernovae are the most commonly observed variety of core collapse events. They have been detected in a wide range of wavelengths from radio, through optical to X-rays. The standard picture of a type IIP supernova has the blastwave interacting with the progenitor's circumstellar matter to produce a hot region bounded by a forward and a reverse shock. This region is thought to be responsible for most of the X-ray and radio emission from these objects. Yet the origin of X-rays from these supernovae is not well understood quantitatively. The relative contributions of particle acceleration and magnetic field amplification in generating the X-ray and radio emission need to be determined. In this work we analyze archival Chandra observations of SN 2004dj, the nearest supernova since SN 1987A, along with published radio and optical information. We determine the pre-explosion mass loss rate, blastwave velocity, electron acceleration and magnetic field amplification efficiencies. We find that a greater fraction of the thermal energy goes into accelerating electrons than into amplifying magnetic fields. We conclude that the X-ray emission arises out of a combination of inverse Compton scattering by non-thermal electrons accelerated in the forward shock and thermal emission from supernova ejecta heated by the reverse shock.Comment: 9 pages, 7 figures, 1 tabl

    Sizes and Temperature Profiles of Quasar Accretion Disks from Chromatic Microlensing

    Get PDF
    Microlensing perturbations to the flux ratios of gravitationally lensed quasar images can vary with wavelength because of the chromatic dependence of the accretion disk's apparent size. Multiwavelength observations of microlensed quasars can thus constrain the temperature profiles of their accretion disks, a fundamental test of an important astrophysical process which is not currently possible using any other method. We present single-epoch broadband flux ratios for 12 quadruply lensed quasars in eight bands ranging from 0.36 to 2.2 microns, as well as Chandra 0.5--8 keV flux ratios for five of them. We combine the optical/IR and X-ray ratios, together with X-ray ratios from the literature, using a Bayesian approach to constrain the half-light radii of the quasars in each filter. Comparing the overall disk sizes and wavelength slopes to those predicted by the standard thin accretion disk model, we find that on average the disks are larger than predicted by nearly an order of magnitude, with sizes that grow with wavelength with an average slope of ~0.2 rather than the slope of 4/3 predicted by the standard thin disk theory. Though the error bars on the slope are large for individual quasars, the large sample size lends weight to the overall result. Our results present severe difficulties for a standard thin accretion disk as the main source of UV/optical radiation from quasars.Comment: 21 pages, 9 tables, 10 figures. Fairly significant changes made to match published version, including the addition of an extra table, and extra figure, and some explanatory tex

    Discovery of Radio Outbursts in the Active Nucleus of M81

    Get PDF
    The low-luminosity active galactic nucleus of M81 has been monitored at centimeter wavelengths since early 1993 as a by-product of radio programs to study the radio emission from Supernova 1993J. The extensive data sets reveal that the nucleus experienced several radio outbursts during the monitoring period. At 2 and 3.6 cm, the main outburst occurred roughly in the beginning of 1993 September and lasted for approximately three months; at longer wavelengths, the maximum flux density decreases, and the onset of the burst is delayed. These characteristics qualitatively resemble the standard model for adiabatically expanding radio sources, although certain discrepancies between the observations and the theoretical predictions suggest that the model is too simplistic. In addition to the large-amplitude, prolonged variations, we also detected milder changes in the flux density at 3.6 cm and possibly at 6 cm on short (less than 1 day) timescales. We discuss a possible association between the radio activity and an optical flare observed during the period that the nucleus was monitored at radio wavelengths.Comment: To appear in The Astronomical Journal. Latex, 18 pages including embedded figures and table

    The Transverse Peculiar Velocity of the Q2237+0305 Lens Galaxy and the Mean Mass of Its Stars

    Get PDF
    Using 11-years of OGLE V-band photometry of Q2237+0305, we measure the transverse velocity of the lens galaxy and the mean mass of its stars. We can do so because, for the first time, we fully include the random motions of the stars in the lens galaxy in the analysis of the light curves. In doing so, we are also able to correctly account for the Earth's parallax motion and the rotation of the lens galaxy, further reducing systematic errors. We measure a lower limit on the transverse speed of the lens galaxy, v_t > 338 km/s (68% confidence) and find a preferred direction to the East. The mean stellar mass estimate including a well-defined velocity prior is 0.12 <= 1.94 at 68% confidence, with a median of 0.52 Msun. We also show for the first time that analyzing subsets of a microlensing light curve, in this case the first and second halves of the OGLE V-band light curve, give mutually consistent physical results.Comment: 11 pages, 9 figures, 1 table; animated magnification pattern video can be found at http://www.astronomy.ohio-state.edu/~sdp/animation.avi; accepted for publication in Ap

    Predictions of Gamma-ray Emission from Globular Cluster Millisecond Pulsars Above 100 MeV

    Full text link
    The recent Fermi detection of the globular cluster (GC) 47 Tucanae highlighted the importance of modeling collective gamma-ray emission of millisecond pulsars (MSPs) in GCs. Steady flux from such populations is also expected in the very high energy (VHE) domain covered by ground-based Cherenkov telescopes. We present pulsed curvature radiation (CR) as well as unpulsed inverse Compton (IC) calculations for an ensemble of MSPs in the GCs 47 Tucanae and Terzan 5. We demonstrate that the CR from these GCs should be easily detectable for Fermi, while constraints on the total number of MSPs and the nebular B-field may be derived using the IC flux components.Comment: 12 pages, 2 figures, accepted for publication in ApJ

    X-rays and Gamma-rays from Cataclysmic Variables: The example case of Intermediate Polar V1223 Sgr

    Full text link
    The accretion of matter onto intermediate polar White Dwarfs (IPWDs) seems to provide attractive conditions for acceleration of particles to high energies in a strongly magnetized turbulent region at the accretion disk inner radius. We consider possible acceleration of electrons and hadrons in such region and investigate their high energy radiation processes. It is concluded that accelerated electrons loose energy mainly on synchrotron process producing non-thermal X-ray emission. On the other hand, accelerated hadrons are convected onto the WD surface and interact with dense matter. As a result, high energy γ\gamma-rays from decay of neutral pions and secondary leptons from decay of charged pions appear. We show that GeV-TeV γ\gamma-rays can escape from the vicinity of the WD. Secondary leptons produce synchrotron radiation in the hard X-rays and soft γ\gamma-rays. As an example, we predict the X-ray and γ\gamma-ray emission from IPWD V1223 Sgr. Depending on the spectral index of injected particles, this high energy emission may be detected by the Fermi{\it Fermi}-LAT telescope and/or the future Cherenkov Telescope Array (CTA) observatory.Comment: 16 pages, 1 figure, accepted to MNRA

    Gamma-rays from millisecond pulsars in Globular Clusters

    Full text link
    Globular clusters (GCs) with their ages of the order of several billion years contain many final products of evolution of stars such as: neutron stars, white dwarfs and probably also black holes. These compact objects can be at present responsible for the acceleration of particles to relativistic energies. Therefore, gamma-ray emission is expected from GCs as a result of radiation processes occurring either in the inner magnetosperes of millisecond pulsars or in the vicinity of accreting neutron stars and white dwarfs or as a result of interaction of particles leaving the compact objects with the strong radiation field within the GC. Recently, GeV gamma-ray emission has been detected from several GCs by the new satellite observatory Fermi. Also Cherenkov telescopes reported interesting upper limits at the TeV energies which start to constrain the content of GCs. We review the results of these gamma-ray observations in the context of recent scenarios for their origin.Comment: 20 pages, 9 figures, will be published in Astrophysics and Space Science Series (Springer), eds. N. Rea and D.F. Torre

    'You feel unusual walking’: the invisible presence of walking in English cities

    Get PDF
    Walking is widely recognised as good for health and for the environment, yet many short journeys in urban areas continue to be undertaken by car. This paper draws on research from a large multi-method project to analyse the factors that limit walking for everyday travel. It is argued that although most people see walking in a positive light, and almost everyone walks on some occasions, as an activity it remains barely visible within society, and is rarely recognised in the planning of urban infrastructure. Our research shows that under current urban conditions constraints imposed by family and life-style factors, perceptions of safety and convenience, and expectations about what means of everyday travel are normal severely restrict levels of walking for many people. We argue that while low levels of walking for particular purposes, especially leisure and health, are common and expected, walking is rarely seen as a visible or viable form of everyday transport. To step outside of these norms of expectation by walking more is constructed as unusual behaviour, and the fact that a substantial amount of walking does take place on urban streets is barely acknowledged. We argue that there is a need to recognise fully the walking that exists, and to plan more effectively to accommodate pedestrians so that walking is perceived as an expected way of moving around urban areas

    The Quasar Accretion Disk Size - Black Hole Mass Relation

    Full text link
    We use the microlensing variability observed for nine gravitationally lensed quasars to show that the accretion disk size at 2500 Angstroms is related to the black hole mass by log(R_2500/cm) = (15.6+-0.2) + (0.54+-0.28)log(M_BH/10^9M_sun). This scaling is consistent with the expectation from thin disk theory (R ~ M_BH^(2/3)), but it implies that black holes radiate with relatively low efficiency, log(eta) = -1.29+-0.44 + log(L/L_E) where eta=L/(Mdot c^2). These sizes are also larger, by a factor of ~3, than the size needed to produce the observed 0.8 micron quasar flux by thermal radiation from a thin disk with the same T ~ R^(-3/4) temperature profile. More sophisticated disk models are clearly required, particularly as our continuing observations improve the precision of the measurements and yield estimates of the scaling with wavelength and accretion rate.Comment: 5 pages, 3 figures, submitted to ApJ
    corecore