244 research outputs found

    Reducing the debt : is it optimal to outsource an investment?

    Get PDF
    International audienceWe deal with the problem of outsourcing the debt for a big investment, according two situations: either the firm outsources both the investment (and the associated debt) and the exploitation to a private consortium, or the firm supports the debt and the investment but outsources the exploitation. We prove the existence of Stackelberg and Nash equilibria between the firm and the private consortium, in both situations. We compare the benefits of these contracts. We conclude with a study of what happens in case of incomplete information, in the sense that the risk aversion coefficient of each partner may be unknown by the other partner

    A Plant-Specific Transcription Factor IIB-Related Protein, pBRP2, Is Involved in Endosperm Growth Control

    Get PDF
    General transcription factor IIB (TFIIB) and TFIIB-related factor (BRF), are conserved RNA polymerase II/III (RNAPII/III) selectivity factors that are involved in polymerase recruitment and transcription initiation in eukaryotes. Recent findings have shown that plants have evolved a third type of B-factor, plant-specific TFIIB-related protein 1 (pBRP1), which seems to be involved in RNAPI transcription. Here, we extend the repertoire of B-factors in plants by reporting the characterization of a novel TFIIB-related protein, plant-specific TFIIB-related protein 2 (pBRP2), which is found to date only in the Brassicacea family. Unlike other B-factors that are ubiquitously expressed, PBRP2 expression is restricted to reproductive organs and seeds as shown by RT-PCR, immunofluorescence labelling and GUS staining experiments. Interestingly, pbrp2 loss-of-function specifically affects the development of the syncytial endosperm, with both parental contributions required for wild-type development. pBRP2, is the first B-factor to exhibit cell-specific expression and regulation in eukaryotes, and might play a role in enforcing bi-parental reproduction in angiosperms

    Pathocenosis: A Holistic Approach to Disease Ecology

    Get PDF
    The History of medicine describes the emergence and recognition of infectious diseases, and human attempts to stem them. It also throws light on the role of changing environmental conditions on disease emergence/re-emergence, establishment and, sometimes, disappearance. However, the dynamics of infectious diseases is also influenced by the relationships between the community of interacting infectious agents present at a given time in a given territory, a concept that Mirko Grmek, an historian of medicine, conceptualized with the word “pathocenosis”. The spatial and temporal evolution of diseases, when observed at the appropriate scales, illustrates how a change in the pathocenosis, whether of “natural” or anthropic origin, can lead to the emergence and spread of diseases

    Metal A and Metal B Sites of Nuclear RNA Polymerases Pol IV and Pol V Are Required for siRNA-Dependent DNA Methylation and Gene Silencing

    Get PDF
    Plants are unique among eukaryotes in having five multi-subunit nuclear RNA polymerases: the ubiquitous RNA polymerases I, II and III plus two plant-specific activities, nuclear RNA polymerases IV and V (previously known as Polymerases IVa and IVb). Pol IV and Pol V are not required for viability but play non-redundant roles in small interfering RNA (siRNA)-mediated pathways, including a pathway that silences retrotransposons and endogenous repeats via siRNA-directed DNA methylation. RNA polymerase activity has not been demonstrated for Polymerases IV or V in vitro, making it unclear whether they are catalytically active enzymes. Their largest and second-largest subunit sequences have diverged considerably from Pol I, II and III in the vicinity of the catalytic center, yet retain the invariant Metal A and Metal B amino acid motifs that bind magnesium ions essential for RNA polymerization. By using site-directed mutagenesis in conjunction with in vivo functional assays, we show that the Metal A and Metal B motifs of Polymerases IV and V are essential for siRNA production, siRNA-directed DNA methylation, retrotransposon silencing, and the punctate nuclear localization patterns typical of both polymerases. Collectively, these data show that the minimal core sequences of polymerase active sites, the Metal A and B sites, are essential for Pol IV and Pol V biological functions, implying that both are catalytically active

    A review of the opportunities and challenges for using remote sensing for management of surface-canopy forming kelps

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cavanaugh, K. C., Bell, T., Costa, M., Eddy, N. E., Gendall, L., Gleason, M. G., Hessing-Lewis, M., Martone, R., McPherson, M., Pontier, O., Reshitnyk, L., Beas-Luna, R., Carr, M., Caselle, J. E., Cavanaugh, K. C., Miller, R. F., Hamilton, S., Heady, W. N., Hirsh, H. K., Hohman R., Lee L. C., Lorda J., Ray J., Reed D. C., Saccomanno V. R., Schroeder, S. B. A review of the opportunities and challenges for using remote sensing for management of surface-canopy forming kelps. Frontiers in Marine Science, 8, (2021): 753531, https://doi.org/10.3389/fmars.2021.753531.Surface-canopy forming kelps provide the foundation for ecosystems that are ecologically, culturally, and economically important. However, these kelp forests are naturally dynamic systems that are also threatened by a range of global and local pressures. As a result, there is a need for tools that enable managers to reliably track changes in their distribution, abundance, and health in a timely manner. Remote sensing data availability has increased dramatically in recent years and this data represents a valuable tool for monitoring surface-canopy forming kelps. However, the choice of remote sensing data and analytic approach must be properly matched to management objectives and tailored to the physical and biological characteristics of the region of interest. This review identifies remote sensing datasets and analyses best suited to address different management needs and environmental settings using case studies from the west coast of North America. We highlight the importance of integrating different datasets and approaches to facilitate comparisons across regions and promote coordination of management strategies.Funding was provided by the Nature Conservancy (Grant No. 02042019-5719), the U.S. National Science Foundation (Grant No. OCE 1831937), and the U.S. Department of Energy ARPA-E (Grant No. DE-AR0000922)

    Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots

    Get PDF
    G-protein-coupled receptors mediate the biological effects of many hormones and neurotransmitters and are important pharmacological targets. They transmit their signals to the cell interior by interacting with G proteins. However, it is unclear how receptors and G proteins meet, interact and couple. Here we analyse the concerted motion of G-protein-coupled receptors and G proteins on the plasma membrane and provide a quantitative model that reveals the key factors that underlie the high spatiotemporal complexity of their interactions. Using two-colour, single-molecule imaging we visualize interactions between individual receptors and G proteins at the surface of living cells. Under basal conditions, receptors and G proteins form activity-dependent complexes that last for around one second. Agonists specifically regulate the kinetics of receptor-G protein interactions, mainly by increasing their association rate. We find hot spots on the plasma membrane, at least partially defined by the cytoskeleton and clathrin-coated pits, in which receptors and G proteins are confined and preferentially couple. Imaging with the nanobody Nb37 suggests that signalling by G-protein-coupled receptors occurs preferentially at these hot spots. These findings shed new light on the dynamic interactions that control G-protein-coupled receptor signalling

    Saccharomyces boulardii Improves Intestinal Cell Restitution through Activation of the α2β1 Integrin Collagen Receptor

    Get PDF
    Intestinal epithelial cell damage is frequently seen in the mucosal lesions of inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. Complete remission of these diseases requires both the cessation of inflammation and the migration of enterocytes to repair the damaged epithelium. Lyophilized Saccharomyces boulardii (Sb, Biocodex) is a nonpathogenic yeast widely used as a therapeutic agent for the treatment and prevention of diarrhea and other gastrointestinal disorders. In this study, we determined whether Sb could accelerate enterocyte migration. Cell migration was determined in Sb force-fed C57BL6J mice and in an in vitro wound model. The impact on α2β1 integrin activity was assessed using adhesion assays and the analysis of α2β1 mediated signaling pathways both in vitro and in vivo. We demonstrated that Sb secretes compounds that enhance the migration of enterocytes independently of cell proliferation. This enhanced migration was associated with the ability of Sb to favor cell-extracellular matrix interaction. Indeed, the yeast activates α2β1 integrin collagen receptors. This leads to an increase in tyrosine phosphorylation of cytoplasmic molecules, including focal adhesion kinase and paxillin, involved in the integrin signaling pathway. These changes are associated with the reorganization of focal adhesion structures. In conclusion Sb secretes motogenic factors that enhance cell restitution through the dynamic regulation of α2β1 integrin activity. This could be of major importance in the development of novel therapies targeting diseases characterized by severe mucosal injury, such as inflammatory and infectious bowel diseases

    Proteome Based Construction of the Lymphocyte Function-Associated Antigen 1 (LFA-1) Interactome in Human Dendritic Cells.

    Get PDF
    The β2-integrin lymphocyte function-associated antigen 1 (LFA-1) plays an important role in the migration, adhesion and intercellular communication of dendritic cells (DCs). During the differentiation of human DCs from monocyte precursors, LFA-1 ligand binding capacity is completely lost, even though its expression levels were remained constant. Yet LFA-1-mediated adhesive capacity on DCs can be regained by exposing DCs to the chemokine CCL21, suggesting a high degree of regulation of LFA-1 activity during the course of DC differentiation. The molecular mechanisms underlying this regulation of LFA-1 function in DCs, however, remain elusive. To get more insight we attempted to identify specific LFA-1 binding partners that may play a role in regulating LFA-1 activity in DCs. We used highly sensitive label free quantitative mass-spectrometry to identify proteins co-immunoprecipitated (co-IP) with LFA-1 from ex vivo generated DCs. Among the potential binding partners we identified not only established components of integrin signalling pathways and cytoskeletal proteins, but also several novel LFA-1 binding partners including CD13, galectin-3, thrombospondin-1 and CD44. Further comparison to the LFA-1 interaction partners in monocytes indicated that DC differentiation was accompanied by an overall increase in LFA-1 associated proteins, in particular cytoskeletal, signalling and plasma membrane (PM) proteins. The here presented LFA-1 interactome composed of 78 proteins thus represents a valuable resource of potential regulators of LFA-1 function during the DC lifecycle

    True versus False Parasite Interactions: A Robust Method to Take Risk Factors into Account and Its Application to Feline Viruses

    Get PDF
    International audienceBACKGROUND: Multiple infections are common in natural host populations and interspecific parasite interactions are therefore likely within a host individual. As they may seriously impact the circulation of certain parasites and the emergence and management of infectious diseases, their study is essential. In the field, detecting parasite interactions is rendered difficult by the fact that a large number of co-infected individuals may also be observed when two parasites share common risk factors. To correct for these "false interactions", methods accounting for parasite risk factors must be used. METHODOLOGY/PRINCIPAL FINDINGS: In the present paper we propose such a method for presence-absence data (i.e., serology). Our method enables the calculation of the expected frequencies of single and double infected individuals under the independence hypothesis, before comparing them to the observed ones using the chi-square statistic. The method is termed "the corrected chi-square." Its robustness was compared to a pre-existing method based on logistic regression and the corrected chi-square proved to be much more robust for small sample sizes. Since the logistic regression approach is easier to implement, we propose as a rule of thumb to use the latter when the ratio between the sample size and the number of parameters is above ten. Applied to serological data for four viruses infecting cats, the approach revealed pairwise interactions between the Feline Herpesvirus, Parvovirus and Calicivirus, whereas the infection by FIV, the feline equivalent of HIV, did not modify the risk of infection by any of these viruses. CONCLUSIONS/SIGNIFICANCE: This work therefore points out possible interactions that can be further investigated in experimental conditions and, by providing a user-friendly R program and a tutorial example, offers new opportunities for animal and human epidemiologists to detect interactions of interest in the field, a crucial step in the challenge of multiple infections

    PKA regulatory subunits mediate synergy among conserved G-protein-coupled receptor cascades

    Get PDF
    G-protein-coupled receptors sense extracellular chemical or physical stimuli and transmit these signals to distinct trimeric G-proteins. Activated Gα-proteins route signals to interconnected effector cascades, thus regulating thresholds, amplitudes and durations of signalling. Gαs- or Gαi-coupled receptor cascades are mechanistically conserved and mediate many sensory processes, including synaptic transmission, cell proliferation and chemotaxis. Here we show that a central, conserved component of Gαs-coupled receptor cascades, the regulatory subunit type-II (RII) of protein kinase A undergoes adenosine 3′-5′-cyclic monophosphate (cAMP)-dependent binding to Gαi. Stimulation of a mammalian Gαi-coupled receptor and concomitant cAMP-RII binding to Gαi, augments the sensitivity, amplitude and duration of Gαi:βγ activity and downstream mitogen-activated protein kinase signalling, independent of protein kinase A kinase activity. The mechanism is conserved in budding yeast, causing nutrient-dependent modulation of a pheromone response. These findings suggest a direct mechanism by which coincident activation of Gαs-coupled receptors controls the precision of adaptive responses of activated Gαi-coupled receptor cascades
    corecore