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Abstract This paper deals with the problem of outsourcing the debt for a big
investment, according two situations: either the firm outsources both the invest-
ment (and the associated debt) and the exploitation to another firm (for example
a private consortium), or the firm supports the debt and the investment but out-
sources the exploitation. We prove the existence of Stackelberg and Nash equilibria
between the firms, in both situations. We compare the benefits of these contracts,
theorically and numerically. We conclude with a study of what happens in case
of incomplete information, in the sense that the risk aversion coefficient of each
partner may be unknown by the other partner.
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1 Introduction

With the significant increase in recent years of public debt in many developed
countries, together with the associated concerns related to possible defaults of some
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Université Paris-Est, CERMICS (ENPC), INRIA, E-mail: jourdain@cermics.enpc.fr
This research benefited from the support of the Eurostars E!5144-TFM project and of the
Chaire “Risques Financiers“, Fondation du risque.
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of them, the question of financing public projects is more than ever at the center
of economic and political considerations. To overcome this problem, leveraging
on the private sector appears at first glance as a good idea. This type of Public-
Private Partnership (PPP) was initiated in the United Kingdom in 1992, under the
name Private Financing Initiative (PFI), and has widely been used since then, so
that it represented one third of all public investments made in the UK during the
period 2001-2006. It has also been used in many other countries, in particular in
Europe, Canada and in the United States, to finance hospitals, prisons or stadiums
among others. It is also recommended by the OECD. We refer among many other
references to [3] for an overview of the extent of PPPs in Europe and in the US, to
the website of the European PPP Expertise Center (EPEC) or the website of the
National Council for Public-Private Partnerships, and to [7] for a global overview
made by the OECD.

However, as emphasized by the recent discussions in the UK, although the
benefits of this type of partnership are mainly admitted, there are still many
concerns about its drawbacks (see [8] for a detailed overview). Even though some
drawbacks are of political, social or behavioral natures, others are purely economic
and are the ones that we are interested in. More precisely, we would like to answer
the following question: from an economic point of view, and taking into account
the constraints that a country faces when issuing a new amount of debt, is it
optimal for this country to finance a public project via a private investment?

Although already of a big interest, this question does not need to be restricted
to debt issuance by a country but can be generalized to any economic agent, be it a
country or a firm. Indeed, any firm has some constraints on its debt level for several
reasons. In some cases, banks will simply not allow a company to borrow enough
money to sustain a very expensive project. But even if it is not the case, since the
debt level appears on the company’s accounts, issuing too much debt will affect the
opinion and confidence of investors, and in particular deteriorate its rating. This
can lead to a higher credit spread when issuing new bonds, difficulties to increase
the capital of the firm, a drop of the company’s stock price, dissatisfaction of
shareholders or in the worst case, bankruptcy. We can cite some concrete examples
where the dilemma between investing directly or resorting to outside investment
can occur: owning or renting offices or factories, owning or leasing trucks, trains
or planes, some industrial machines or some office materials (such as computers).

Therefore we will consider in this paper the problem of outsourcing from the
debt point of view. Since the question of outsourcing some operations has already
been widely studied and our aim is only to study the relevance of outsourcing
an investment in order to reduce the debt of a firm (or economic agent), we will
compare two situations where the operations are always outsourced. In the first
one, the firm outsources both the investment/debt and the operations, while in
the second one, the firm supports the debt and the investment but outsources the
operations. In both situations, the investment is covered by issuing a debt at time
0 but the cost of borrowing of the outsourcer and the outsourcee may be different.
More specifically, we suppose that the outsourcer faces some important constraints
if he has to issue a new debt, stylized by a convex function f modeling his aversion
for debt issuance. That is why he considers the possibility to outsourcing the
investment to a firm which has less constraints.

In [5], Iossa, Martimort and Pouyet give some results on the comparison of
the costs and benefits associated to PPP. Hillairet and Pontier [4] propose a study
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on PPP and their relevance, assuming the eventuality of a default of the counter-
party, but they do not take into account the government debt aversion. However,
the attractivity for government of PPP contracts relies obviously on the short
term opportunity gain to record infrastructure assets out of the government’s
book. To our knowledge, there does not exist any reference in Mathematics area.
In Economics, a narrow strand of literature is dedicated to the discussion of Build-
Operate-Transfer (BOT) concession contracts, which is a frequent form of PPP.
Under BOT contracts the private sector builds and operates an infrastructure
project for a well defined concession period and then transfers it to public au-
thorities. The attractiveness of BOT contracts to governments stems from the
possibility to limit governmental spending by shifting the investment costs to a
private consortium. In [1], Auriol and Picard discuss the choice of BOT contracts
when governments and consortia do not share the same information about the cost
parameter during the project life. They summarize the government’s financial con-
straint by its “shadow” cost of public funds, which reflects the macro-economic
constraints that are imposed on national governments’ surplues and debt levels by
supranational institutions such as the I.M.F. Using linear demand functions and
uniform cost distributions, they compute theoretical values of shadow costs that
would entice governments to choose BOT concessions contracts. Our approach is
different from the modelization and the resolution point of view.

This paper studies, in a two-period setting, two kinds of equilibria between
risk averse firms. The first one is a Stackelberg equilibrium with the outsourcer as
leader, which corresponds to the more classic setting for outsourcing situations.
The second one is a Nash equilibrium. It may correspond to an outsourcing be-
tween two economic entities within a same group: in this case, the two entities
make their decisions simultaneously and a Nash equilibrium is more favourable
for the group than a Stackelberg one. For both situations where the investment is
outsourced or not, Stackelberg and Nash equilibria are characterized. A theorical
comparison is provided for the Nash equilibrium, from the point of view of the
outsourcer: we check that the investment should be outsourced if the outsourcee
has a lower cost of capital or if the outsourcer has a high debt aversion. For the
Stackelberg equilibrium, the comparison is done numerically on a concrete exam-
ple. The analysis is extended to an incomplete information setting in which the
firms do not have perfect knowledge of the preference of their counterparty. To
model the social need of the investment, the outsourcer gets a penalty if the out-
sourcee does not accept the contract.

The present paper is organised as follows. In Section 2 we set the problem of
outsourcing between two firms and we define the optimization problems in Situa-
tion 1, in which the firm outsources both the investment/debt and the operations,
and in Situation 2 , in which the firm supports the debt and the investment but
outsources the operations. Section 3 provides the main results concerning Nash
and Stackelberg equilibria, the comparison between the two situations, and the
case of incomplete information. The proofs are postponed in Appendices. We pro-
vide in Section 4 a numerical example to better investigate the quantitative effects
of the model. Appendix 5 is devoted to the proofs of existence and characterization
of Nash and Stackelberg equilibria in Situation 1, then Appendix 6 does the same
in Situation 2. Appendix 7 concerns the proofs of the comparison results between
the two situations and Appendix 8 the results obtained in incomplete information.
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2 Problem formulation

2.1 Costs and revenue

Consider two firms. Firm I is the one who wants to reduce its debt and therefore
considers the possibility of outsourcing an investment to a second firm J . In any
case, firm J is the one that will support the operational cost of the project, on the
time horizon T . Let the operational cost on the time-interval [0, T ] Cop be given
by:

Cop = µ− ϕ(e)− δψ(a), (1)

where

– µ is the “business as usual” cost, such that E[µ] represents the “average”
benchmark cost (it takes into account the price of commodities, employees,
rents...). We assume that µ is a non constant random variable bounded from
below by a finite constant µ on a probability space (Ω,FT ,P) such that

∀λ ∈ R, E
[
eλµ
]
< +∞. (2)

Notice that this implies that the function λ 7→ E
[
eλµ
]

is infinitely differen-
tiable.

– e is a non-negative parameter and represents the effort made on the time-
interval [0, T ] in order to reduce the operational cost such as logistics improve-
ments, research and development, maintenance or more efficient or less workers.
e will in general have a social impact for firm I,

– δ ∈ R represents the impact of the quality of the investment on the reduction
of operational costs. We do not impose any restriction on the sign of δ, since,
as suggested in [5], both signs can make sense depending on the situation.
Indeed, when constructing a building, using more expensive material usually
brings less maintenance costs and therefore a positive delta. On the contrary,
for a hospital, using more sophisticated (and expensive) machines can bring
bigger maintenance costs and a negative delta.

– a ≥ 0 is the effort done at time 0 to improve the (initial) quality of the invest-
ment, improving in the meantime the social value of the project. Depending
on δ, a affects positively, negatively or does not affect the operational cost.
Remark is that a has the same dimension as the effort e,

– ϕ : R+ → R+ and ψ : R+ → R+, modeling the respective impacts of the efforts
e and a respectively on the operational cost Cop, are C1, increasing and strictly
concave functions, satisfying the Inada conditions ϕ′(0) = +∞ and ϕ′(∞) = 0,
ψ′(0) = +∞ and ψ′(∞) = 0. We also assume that ϕ(∞) + δ+ψ(∞) < µ where

µ is the lower bound of the random variable µ and δ+ = max(δ, 0), which

ensures that Cop > 0; as a consequence, ∀(x, y) ∈ R2
+, ϕ(x) + δ+ψ(y) < µ.

We assume furthermore that (ϕ′)−1(x) ∼ (ψ′)−1(x) for x → 0 for technical
reasons and to make the computations lighter even if we could relax this last
assumption.

The parameter e is a control for firm J , while a is a control for the firm that
supports the investment, I or J depending on the situation; µ represents the cost
on the time-interval [0, T ].
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The minimal investment required by the project is D > 0 and if initial effort are
done (i.e. if a > 0) the total investment is the sum D + a. This investment is
assumed to be entirely covered by issuing a debt with horizon T at time 0. To
take into account the possibility that the cost of borrowing is in general not the
same for different firms, we denote the respective non-negative constant interest
rates of firms I and J by rI and rJ . On the time-interval [0, T ], the amount to be
reimbursed by the borrower K ∈ {I, J} is (1 + rK)(D + a).
Finally, we need to add the remaining costs on [0, T ] coming from the effort e as
well as the maintenance costs denoted by m :

Cm = e+m. (3)

The maintenance cost m is a non-negative parameter and will have a social impact
for firm I.

Since firm I gives to firm J either a rent or the right to exploit the project
on [0, T ], in both cases we can consider a random variable R which corresponds
to the endowment for firm J and the rent or shortfall for firm I, on [0, T ]. This
variable is computed using a reasonably simple rule, decided at t = 0 and subject
to a control of firm I. In reality, in such contracts, the endowment can be indexed
on the price of commodities in the case of transportation or on a real-estate index
for the rent of a building. Since firm I wants to have a project of good quality
as well as a well maintained project, we assume that R is a non-negative random
variable and depends on both Cop and the maintenance cost in the following way:

R = α+ βCop + γg(m), (4)

with α ≥ 0, β ∈ R, γ ≥ 0 and g is a C1, increasing and strictly concave function
on R+, such that g′(0) =∞ and g′(∞) = 0. Moreover, we assume that

m0 := inf{m > 0 : g(m) > 0} < +∞. (5)

The constants α, β and γ are controls of firm I. We do not put any randomness
in the coefficients α, β and γ of R since we consider that they are defined at
time t = 0 by a contract between firms I and J . All the randomness in R comes
from the operational cost term Cop. Still, this model allows for an indexation on a
benchmark such as the price of commodities or inflation through this dependence
on operational costs.

2.2 Optimization problems

We assume that the risk aversions of firm I and J are represented respectively by
the exponential utility functions U(x) = −e−ux and V (x) = −e−vx, x ∈ R, with
u, v > 0.
We consider two different situations: in Situation 1, firm J supports the debt and
takes care of the exploitation; its controls are a, e and m, whereas the controls of
firm I are α, β and γ. In Situation 2, firm J only takes care of the exploitation, its
controls are e and m, whereas the controls of firm I are a, α, β and γ. Firm I is the
one that chooses between the two situations. The optimization problems for firm
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J respectively in Situation 1 and 2 are sup(a,e,m) J
1(a, e,m) and sup(e,m) J

2(e,m)
respectively, where:

J1(a, e,m) = E
[
V
(
α+ (β − 1)Cop − e+ γg(m)−m− (1 + rJ)(D + a)

)]
(6)

J2(e,m) = E
[
V
(
α+ (β − 1)Cop − e+ γg(m)−m

)]
(7)

recalling Cop = µ− ϕ(e)− δψ(a).
In these optimization problems, we have assumed that the controls of firm I

are given (they have no reason to be the same in the two cases). We look for
controls in the following admissible sets: e, m and a are non-negative constants.
The eventuality that firm J does not accept the contract will be taken into account
in the constraints of the optimization problem for firm I.

On the other hand, we consider that the project has an initial “social” value ba(a)
for firm I, and a good maintenance also represents a social benefit bm(m). The
benefits of the efforts on operational costs are modelled through the function be. We
also introduce a penalization function f representing the aversion for debt issuance
of firm I (firm J has no debt aversion). Those functions satisfy the following
hypotheses

– ba : R+ → R+ is a C1, increasing and concave function. (ba)′(0) > 0, possibly
infinite, (ba)′(∞) = 0 and ba(∞) <∞.

– bm : R+ → R+ is a C1, increasing and concave function, such that (bm)′(0) =
∞ and (bm)′(∞) = 0.

– be : R+ → R+ is a C1, increasing and concave function, such that (be)′(0) =∞
and (be)′(∞) = 0

– f is an increasing and strictly convex function, satisfying f ′(∞) =∞.

Therefore we write the optimization problem for firm I in both situations as
sup(α,β,γ) I

1(α, β, γ) and sup(a,α,β,γ) I
2(a, α, β, γ) where:

I1(α, β, γ) = E
[
ba(a) + U

(
bm(m) + be(e)− α− βCop − γg(m)

)]
I2(a, α, β, γ) = E

[
ba(a)− f

(
(1 + rI)(D + a)

)
+ U

(
bm(m) + be(e)− α− βCop − γg(m)

)]
.

Hypotheses on ba and f imply that F (a) := ba(a)− f((1 + rI)(D + a)) is strictly
concave, satisfies F ′(∞) = −∞ and F (∞) = −∞. Finally we assume that F ′(0) >
0, possibly infinite. The admissible sets are:
- in Situation 1, α ≥ 0, β ∈ R, γ ≥ 0 and such that

E
[
V
(
α+ (β − 1)(µ− ϕ(e) − δψ(a)) − e+ γg(m) −m− (1 + rJ )(D + a)

)]
≥ V (0); (8)

- in Situation 2, a ≥ 0, α ≥ 0, β ∈ R, γ ≥ 0 and such that

E
[
V
(
α+ (β − 1)(µ− ϕ(e)− δψ(a))− e+ γg(m)−m

)]
≥ V (0). (9)

The constraint ensures that firm J will accept the contract, since it is better or
equal for it than doing nothing.

The most natural equilibrium to be considered in outsourcing situations is a
Stackelberg equibrium with firm I as leader. It corresponds for example to a gov-
ernment which outsources the construction of a stadium, or to an industrial group
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which wants to outsource its trucks/trains to a transport company. Nevertheless,
within a group, a given entity may be interested in outsourcing its debt to another
entity of the same group. In this situation, a Nash equilibrium is more relevant.
Therefore this paper addresses those two kinds of equilibria.

Remark 1 A Stackelberg equilibrium with firm J leader is never relevant from an
economical perspective, since it is never the outsourcee who makes an offer to the
outsourcer. It is also not interesting from a mathematical point of view. Indeed,
in Situation i ∈ {1, 2}, since Cop = µ − ϕ(e) − δψ(a) > 0, Ii is decreasing with
respect to β, while J i is increasing with respect to β. Therefore if firm J is the
leader, for any choice of its controls, firm I’s optimal controls will always bind the
constraint J i ≥ V (0).

3 Main results

The best responses of firm J to given controls of firm I turn out to be easily derived.
That is why we first present them, before stating our main results concerning Nash
and Stackelberg equilibria where these best responses appear. The proofs of the
main results are postponed in Appendices 5, 6, 7, 8.

3.1 Best responses of firm J in Situations 1 and 2

Let us first consider Situation 1 and suppose that (α, β, γ) is given in R+×R×R+.
For firm J the optimization problem is ω by ω, and since U is increasing it writes:

sup
e≥0
{(1− β)ϕ(e)− e}+ sup

m≥0
{γg(m)−m}+ sup

a≥0
{δ(1− β)ψ(a)− (1 + rJ)a}.

Since ψ, ϕ and g are strictly concave, the first order conditions characterize the
points maximizing each function between braces and, with the convention that
(φ′)−1(∞) = 0 for φ = ψ,ϕ, g, we have :

m∗ = (g′)−1(1/γ) ; e∗ = (ϕ′)−1

(
1

(1− β)+

)
; a∗ = (ψ′)−1

(
1 + rJ

(δ(1− β))+

)
.

(10)
Let us now consider Situation 2 and suppose that (a, α, β, γ) is given. Similarly
we obtain that

m∗ = (g′)−1(1/γ), e∗ = (ϕ′)−1

(
1

(1− β)+

)
. (11)

When useful to explicit the dependence of these best responses of firm J with
respect to the controls of firm I, we use the notation m∗(γ), e∗(β) and a∗(β).

To describe the Nash and Stackelberg equilibria, we introduce the continuous
mapping C : R→ R, B : R+ → R+ and B̃ : R× R+ → R+ defined by

C(β) :=
1

v
lnE

[
ev(1−β)(µ−ϕ(e∗(β)))

]
, (12)

B(m) := eu(Id−bm)(m)eu(Id−be)(e∗( v
u+v

))e(u+v)C( v
u+v

), (13)

B̃(β,m) := eu(Id−bm)(m)eu(Id−be)◦e∗(β)euC(β)E
[
euβ(µ −ϕ◦e∗(β))

]
. (14)
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3.2 Nash equilibria

To describe the Nash equilibria, we need the following technical result about the
function g :

Lemma 1 The function G : m 7→ g(m)
g′(m)−m is continuous, satisfies limm→∞

g(m)
g′(m)−

m = +∞ and is decreasing from 0 to −m0 on [0,m0] (where m0 is defined in (5))
and increasing from −m0 to +∞ on [m0,+∞) thus admitting an continuous in-
verse G−1 : [−m0,+∞)→ [m0,+∞).

Theorem 1 In Situation 1, there exists an infinite number of Nash equilibria,
namely the vectors (α̂, β̂, γ̂, ê, m̂, â) satisfying

β̂ = v
u+v , ê = (ϕ′)−1(u+v

u ), â = (ψ′)−1
(

(u+v)(1+rJ)
δ+u

)
, γ̂ = 1

g′(m̂) , (15)

α̂ = C(β̂) + (1 + rJ)(D + â) + ê− u
u+v δψ(â)−G(m̂), (16)

(where C is defined in (12) ) for m̂ varying in
M̂1(rJ) := [0, G−1(C(β̂) + (1 + rJ)(D + â) + ê− u

u+v δψ(â))].
The corresponding optimal values for firms J and I are respectively V (0) and

Î1(m̂) = ba(â)− e−uδψ(â)eu(1+rJ)(D+â)B(m̂),

where B is defined in (13).

Remark 2 – Although there exists an infinite number of Nash equilibria, the
controls β, e and a are the same in all these equilibria.

– Since µ̂− ϕ(ê)− δψ(â) ≥ 0, one has C(β̂)− u
u+v δψ(â) ≥ 0 so that

[0, G−1((ϕ′)−1(u+v
u ) +D)] ⊂

⋂
rJ≥0 M̂1(rJ).

– It is natural to wonder whether there exists in Situation 1 a Nash equilibrium
among the infinite family of such equilibria exhibited in Theorem 1 which max-
imizes Î1. This function depends on the Nash equilibrium only through the
term bm(m̂) − m̂ which has to be maximized. The function m̂ 7→ bm(m̂) − m̂
being concave, it admits a unique maximum on the interval M̂1(rJ) where
m̂ associated with a Nash equilibrium varies. When [(bm)′]−1(1) ∈ M̂1(rJ)
(which is the case for the numerical example investigated in Section 4), then
supm̂∈M̂1(rJ) Î

1(m̂) = Î1([(bm)′]−1(1)) and the optimal value [(bm)′]−1(1) of

m̂ will turn out to be the optimal control m in the Stackelberg equilibria (see
Theorems 5 and 6 below).
Otherwise, supm̂∈M̂1(rJ) Î

1(m̂) = Î1(G−1(C(β̂)+(1+rJ)(D+â)+ê− u
u+v δψ(â))).

Theorem 2 Let F (a) = ba(a) − f((1 + rI)(D + a)). In Situation 2, there exists
an infinite number of Nash equilibria namely the vectors (α̂, β̂, γ̂, ê, m̂, â) defined
by

m̂ ≥ 0, β̂ = v
u+v , ê = (ϕ′)−1

(
u+v
u

)
, γ̂ = 1

g′(m̂) , (17)

â ∈ arg maxa≥0

[
F (a)− e−uδψ(a)B(m̂)

]
, (18)

α̂ = C(β̂) + ê− u
u+v δψ(â)−G(m̂), (19)

and such that C(β̂) + ê− u
u+v δψ(â)−G(m̂) ≥ 0, a condition that is satisfied when

m̂ ≤ G−1((ϕ′)−1(u+v
u )). Moreover, α̂+ γ̂ > 0 and if δ ≥ 0, then â is positive and
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unique for each m̂.
The corresponding optimal values for firms J and I are respectively V (0) and

Î2(m̂) = F (â)− e−uδψ(â)B(m̂).

Let M̂2(rI) denote the set of m̂ ≥ 0 for which there exists (α̂, β̂, γ̂, ê, â) such that
(α̂, β̂, γ̂, ê, m̂, â) is a Nash equilibrium in Situation 2.

Remark 3 – Notice that the order the different controls are determined is impor-
tant, since some of them depend on the other ones. Indeed β̂ depends on no
other control and therefore should be determined first, leading to the value of
ê. Then one should fix m̂, in order to have γ̂, which allows then to determine
â, and once this is done, we can find α̂. Although α̂ and γ̂ essentially play
the same role, the fact that γ̂ only depends on m̂ makes this order important.
If one chooses α̂ first, then the determination of â is not clear, since then â
depends on m̂, while m̂ depends on â and α̂.

– We expect that, as in Situation 1, when [(bm)′]−1(1) ∈ M̂2(rI) (which is the

case for the numerical example investigated in Section 4), then supm̂∈M̂2(rI)
Î2(m̂) =

Î1([(bm)′]−1(1)). Indeed, a formal differentiation of Î2(m̂) with respect to m̂

leads to (Î2)′(m̂) = −e−uδψ(â)B′(m̂) since, because of the first order optimality
condition related to (18), one should not need to take care of the dependence
of â on m̂. Moreover, one easily checks that the unique solution to B′(m) = 0
is m = [(bm)′]−1(1). This is illustrated in Figure 1.

We now compare the respective optimal values Î1(m̂) and Î2(m̂) for firm I in

Situations 1 and 2 for the same maintenance effort m̂ ∈ M̂1(rJ)∩
{⋂

rI≥0 M̂2(rI)
}

.

According to Remarks 2 and 3, the same value m̂ = [(bm)′]−1(1) is likely to
maximize Î1(m̂) and Î2(m̂). Therefore choosing the same maintenance effort m̂
for the comparison is natural. Notice also that, by Theorem 2 and Remark 2,

[0, G−1((ϕ′)−1(u+v
u ))] ⊂ M̂1(rJ)∩

{⋂
rI≥0 M̂2(rI)

}
. Let â1(rJ) = (ψ′)−1

(
(u+v)(1+rJ)

δ+u

)
(resp. â2(rI)) denote the value of the control a in the Nash equilibrium with m = m̂
in Situation 1 (resp. in Situation 2 when δ ≥ 0).

We are going to exhibit cases in which Situation 1 (meaning outsourcing (re-
spectively Situation 2, meaning debt issuance) is the more profitable for firm I.

Theorem 3 Let rate rJ ≥ 0 be fixed and m̂ ∈ M̂1(rJ) ∩
{⋂

rI≥0 M̂2(rI)
}

. In

case of rate rI satisfying

rI ≤
f−1

[
B(m̂)e−uδψ(â1(rJ))

(
eu(1+rJ)(D+â1(rJ)) − 1

)]
D + â1(rJ)

− 1, (20)

we have Î2(m̂) ≥ Î1(m̂) and the better contract for firm I is the second one,
meaning debt issuance.

Condition (20) has a clear economical interpretation. The right-hand side does not
depend on rI . Therefore for a fixed rJ , debt issuance is the best choice for firm
I as soon as its interest rate rI is small enough. Note the impact of the function
f modeling its debt aversion : the larger f , the smaller the threshold on rI in
condition (20), look at Figure 2.
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Theorem 4 We assume δ > 0. Let rate rJ ≥ 0 be fixed (thus â1(rJ) is fixed) and

m̂ ∈ M̂1(rJ) ∩
{⋂

rI≥0 M̂2(rI)
}

. In case of rate rI satisfying

(1 + rI)(D + â2(rI)) ≥ f−1
[
B(m̂)e−uδψ(â2(rI))

(
eu(1+rJ)(D+â2(rI)) − 1

)]
(21)

and one of the following:

(1 + rI)f
′[(1 + rI)(D + â1(rJ))] > (ba)′(â1(rJ)) + uδψ′(â1(rJ))B(m̂)e−uδψ(â1(rJ)),

or (22)

ψ′(â2(rI)) >
(u+ v)(1 + rJ)

uδ

one has Î1(m̂) ≥ Î2(m̂) and the better contract for firm I is the first one, meaning
outsourcing.

The economical interpretation of condition (22) is natural. Indeed, the right-hand
sides of the inequalities do not depend on rI whereas the left-hand sides are in-
creasing functions of rI . Hence (22), leading to optimality of outsourcing for firm
I, is satisfied as soon as its interest rate rI is large enough. Besides, we see that
the more convex f is, the smaller is the threshold on rI in the first inequality of
condition (22).

Unfortunately, we have not been able to check that the condition (21) for
optimality is satisfied for large rI , but Figure 3 gives a rule of decision between
debt issuance and outsourcing.

3.3 Stackelberg equilibria

Depending on Situation 1 or 2 and on the sign of δ, the optimal β will be charac-
terized as solution of different equations. To specify those equations, we need to
introduce the functions

h(λ) =
E
[
µeλµ

]
E [eλµ]

, (23)

S(β) :=

β
1−β + (be)′ ◦ (ϕ′)−1

(
1

(1−β)+

)
(1− β)2ϕ′′ ◦ (ϕ′)−1

(
1

(1−β)+

) , (24)

S̃(β) :=
1 + rJ

δ(1 − β)2(ψ′′)((ψ′)−1
(

1+rJ
(δ(1−β))+

)
)

(1 + rJ )
β

1 − β
+

(ba)′ ◦ (ψ′)−1
(

1+rJ
(δ(1−β))+

)
ue(Id−bm))((bm)′)−1(1)k(β)

 ,

(25)
where k(β) is a positive function of β defined as follows,

k(β) := eu(Id−be)◦e∗(β)e−uδψ◦a
∗(β)eu(1+rJ )(D+a∗(β))euC(β)E

[
euβ
(
µ−ϕ◦e∗(β)

)]
(26)

with e∗(β) and a∗(β) defined in (10) and C(β) in (12).

We consider the following equations

h(uβ)− h(v(1− β)) = S(β), (27)
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h(uβ)− h(v(1− β)) = S(β) + S̃(β), (28)

h(uβ)− h(v(1− β)) = S̃(β). (29)

Theorem 5 In Situation 1, there exists at least one Stackelberg equilibrium with
firm I as the leader. Moreover, if there exists a Stackelberg equilibrium (ê, m̂, â, α̂, β̂, γ̂)
with α̂ > 0, then it is characterized by :

ê = (ϕ′)−1
( 1

(1− β̂)+

)
, â = (ψ′)−1

(
1 + rJ

(δ(1− β̂))+

)
, m̂ =

[
(bm)′

]−1
(1), γ̂ = 1/g′(m̂),

α̂ = C(β̂) + (1 + rJ)(D + â) + ê− (1− β̂)δψ(â)−G(m̂).

If δ > 0 then β̂ is a solution of (28) and is less than v
u+v .

If δ < 0 then either β̂ is less than v
u+v and solves (27) or β̂ is larger than one and

solves (29).
The corresponding optimal values for firms J and I are respectively V (0) and
I1(α̂, β̂, γ̂).

Theorem 6 In Situation 2, there exists at least one Stackelberg equilibrium with
firm I as the leader. Moreover, if there exists a Stackelberg equilibrium (ê, m̂, â, α̂, β̂, γ̂)
with α̂ > 0, then it satisfies:

β̂ is a solution of (27), ê = (ϕ′)−1
(

1

(1−β̂)+

)
, m̂ =

[
(bm)′

]−1
(1), γ̂ = 1/g′(m̂),

â ∈ arg maxa≥0 F (a)−e−uδψ(a)B̃(β̂, m̂) and α̂ = C(β̂)+ ê− (1− β̂)δψ(â)−G(m̂),

where the mappings C and B̃ are defined by (12)-(14). In particular, β̂ < v
u+v .

Moreover, if δ ≥ 0, then arg maxa≥0 F (a) − e−uδψ(a)B̃(β̂, m̂) is a singleton and
â > 0.
The corresponding optimal values for firms J and I are respectively V (0) and
I2(â, α̂, β̂, γ̂).

Proposition 2 below states that Equation (27) which appears in the character-
ization of β̂ when α̂ > 0 in both Situations 1 and 2 always admits a solution.

An analytical comparison is not so easy, but Figures 4 and 5 allow a numerical
comparison between debt issuance and outsourcing.

3.4 Incomplete information

In this section we consider the previous equilibrium problems when the firms do
not have a perfect knowledge of the preferences of the other firm. More precisely, we
still assume that the firms’ utility functions are U(x) = −e−ux and V (x) = −e−vx
respectively, but firm I perceives v as a (0,+∞)-valued random variable with
known distribution and independent from µ that we denote V and firm J perceives
u as a random variable with known distribution and independent from µ that we
denote U . According to Section (3.1), firm J optimal controls are functions of the
controls β, γ fixed by firm I that do not depend on the risk aversion parameters
u. Therefore, equations (10) and (11) still hold in incomplete information and
incomplete information on the risk aversion parameter u has no impact on the
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equilibria. In contrast, the uncertainty on the parameter v has an impact as the
acceptation of the contract by firm J depends on it. To model the social need of
the investment, we introduce a (social) penalty p ∈ R ∪ {+∞} that firm I gets if
firm J does not accept the contract.

3.4.1 Stackelberg equilibrium, firm I is leader

We first introduce the events Ai, i = 1, 2 : “firm J accepts the contract” in
Situation i.
The optimization problem for firm I is

u1
I := −p ∨ sup

(α,β,γ)

{Ĩ1(α, β, γ)P
(
A1(α, β, γ)

)
− p(1− P

(
A1(α, β, γ)

)
)}, (30)

in Situation 1 and in Situation 2, it becomes :

u2
I := −p ∨ sup

(a,α,β,γ)

{Ĩ2(a, α, β, γ)P
(
A2(a, α, β, γ)

)
− p(1− P

(
A2(a, α, β, γ)

)
)}.

(31)
The functions

Ĩ1(α, β, γ) := ba(a∗(β))− E
[
e−u

(
[bm−γg](m∗(γ))+[be+βϕ](e∗(β))−α−β(µ−δψ(a∗(β)))

)]
,

Ĩ2(a, α, β, γ) := F (a)− E
[
e−u

(
[bm−γg](m∗(γ))+[be+βϕ](e∗(β))−α−β(µ−δψ(a))

)]
,

where e∗, m∗ and a∗ have been defined in (10), are the social gain that firm I
respectively gets in Situations 1 and 2 if firm J accepts the contract. Notice that
the supremum is taken with −p to model the possibility for firm J not to enter
the game and that p = +∞ corresponds to the case where firm I absolutely wants
that firm J accepts the contract.
In order to characterize the acceptance set Ai, we introduce

J̃1(v, α, β, γ) := −ev(1+rJ)(D+a∗(β))

× Ee−v
(
α+(β−1)(µ−δψ(a∗(β))−ϕ(e∗(β)))−e∗(β)+[γg−Id](m∗(γ))

)
(32)

and

J̃2(v, a, α, β, γ) := −Ee−v
(
α+(β−1)(µ−δψ(a)−ϕ(e∗(β)))−e∗(β)+[γg−Id](m∗(γ))

)
. (33)

Firm J accepts the contract if and only if −J̃ i(V, .) ≤ 1, thus Ai(.) = {−J̃ i(V, .) ≤
1}.
We define the value function of the problem with complete information that firm
J ’s risk aversion is equal to v

u1(v) := sup
{(α,β,γ)∈R+×R×R+:−J̃1(v,α,β,γ)≤1}

Ĩ1(α, β, γ)

u2(v) := sup
{(a,α,β,γ)∈R+×R+×R×R+:−J̃2(v,a,α,β,γ)≤1}

Ĩ2(a, α, β, γ)

These value functions are respectively obtained for the Stackelbreg equilibria given
in Theorems 5 and 6. We have the following result:
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Theorem 7 Let

wiI := −p ∨ sup
v>0
{ui(v)P(V ≤ v)− p

(
1− P(V ≤ v)

)
}. (34)

We have wiI ≤ uiI and when either p < +∞ or ∃v ∈ (0,+∞), P(V > v) = 0 then
wiI = uiI .

Theorem 7 has an important interpretation. Indeed, it means that in order to solve
(30) or (31), firm I first solves its problem for any given v as if the information
was complete or in other words as in Section 3.3, and then ”chooses” the level v
that would bring the greatest social expectation in (34).

Theorem 8 Let v0 := inf{v > 0 : P(V ≤ v) > 0}. If limv→v+
0
ui(v) ≤ −p then the

fact that the two firms do not enter into any contract is a Stackelberg equilibrium
in Situation i.
Otherwise, if v1 := sup{v > 0 : P(V > v) > 0} < +∞ then the optimization
problem (34) has a solution v? ∈ (0, v1] ∩ [v0, v1] (equal to v1 when p = +∞) and
any Stackelberg equilibrium for the problem with complete information and risk
aversion v? for firm J is a Stackelberg equilibrium for the problem with incomplete
information.

3.4.2 Nash equilibrium

We did not succeed in finding sufficient conditions for the existence of a Nash equi-
librium with incomplete information. Nevertheless, we obtain necessary conditions
that are similar for both situations:

Theorem 9 Assume existence of a Nash equilibrium ĉ = (â, α̂, β̂, γ̂, ê, m̂) such
that the value for firm I is greater than −p and let v̂ := sup{v > 0 : −J(v, ĉ) ≤ 1}
with J(v, ĉ) defined (using Cop = µ−ϕ(e)−δψ(a)) in Situations 1 and 2 respectively
as

J(v, a, α, β, γ, e,m) := −E
[
e−v

(
α+(β−1)Cop−e+γg(m)−m−(1+rJ)(D+a)

)]
,

J(v, a, α, β, γ, e,m) := −E
[
e−v

(
α+(β−1)Cop−e+γg(m)−m

)]
.

Then v̂ > 0, ê = (ϕ′)−1
(

1

(1−β̂)+

)
, γ̂ = 1

g′(m̂) and in Situation 1, â = (ψ′)−1
(

1+rJ
(δ(1−β̂))+

)
.

If v̂ < +∞, then ĉ is a Nash equilibrium for the problem with complete information
and risk aversion v̂ for firm J and for each v < v̂, P(V ≤ v) < P(V ≤ v̂).
If v̂ = +∞, then for each v ∈ (0,+∞), P(V ≤ v) < 1.

Remark 4 If there is a vector (v1, · · · , vn) of elements of (0,+∞) such that∑n
k=1 P(V = vk) = 1, one deduces that if there exists a Nash equilibrium for the

problem with incomplete information, then ∃i such that v̂ = vi.
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4 Numerical Example

We investigate a numerical example to better quantify and compare the two dif-
ferent situations (Situation 1: outsourcing, Situation 2 : debt issuance) and the
two equilibria (Nash and Stackelberg equilibria). We have chosen the following
numerical values:

– the risk aversion parameters are u = v = 1,
– the impact of the quality of the investment on the operational costs is δ = 1,
– the minimal investment is D = 1,
– the random cost µ follows a uniform distribution on the interval [µ, µ], with
µ = 1 and µ = 2,

– the aversion to debt issuance is f(x) = e1.6x − 1 (or e1.7x − 1),
– the benefits functions are ba(x) = x

(1+x) and bm(x) = be(x) =
√
x,

– the impact of the maintenance cost m on the rent R is modeled by the function
g(x) =

√
x, and the impact of the efforts a and e on the operational costs by

the functions φ(x) = ψ(x) =
µ

3(1+π/4) (
√
x1x≤1 + (arctan(x) + 1 − π/4)1x>1)

(thus satisfying the condition ϕ(∞) + δ+ψ(∞) < µ),
– the interest rates rI and rJ over the period [0, T ] (when borrowing 1 initially,

firm K ∈ {I, J} has to reimburse (1 + rK) on the time-interval [0, T ]) vary in
the interval [0, 1[.

4.1 Nash equilibrium

Dependency on the maintenance costs m̂ in Nash equilibrium We now investigate
the Nash equilibria in both situations. As stated in Theorem 1 and Theorem 2,
the optimal value functions Î1 and Î2 depend on the optimal maintenance costs
m̂. Figure 1 gives an insight of this dependency, for two different values of rJ in
Situation 1 and for a larger value of rI in Situation 2. We notice that outsourcing is
worthless for average maintenance costs (between 5% and 50% of D for rJ = 45%)
We also observe that the smaller rJ , the larger is the interval of values m̂ for which
outsourcing is better than debt issuance.

The maintenance costs m̂ numerically optimizing the value functions Î1 and
Î2 is [(bm)′]−1(1) = 1

4 (which is also the maintenance costs in Stackelberg equi-
librium, whatever the situation) as expected from Remarks 2 and 3. Therefore,
in the forthcoming figures, the Nash equilibrium is computed for this optimal
maintenance costs m̂ = 1

4 .
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Fig. 1 Value functions Î1 and Î2 as functions of m̂

Dependency on the interest rates rI and rJ in Nash equilibrium Figure 2 gives,
for Nash equilibrium, the optimal value function Î1 in Situation 1 (outsourcing)
as a function of rJ ∈ [0, 1[, and Î2 in Situation 2 (debt issuance) as a function of
rI ∈ [0, 1[ and for two differents functions of debt aversion (f(x) = e1.6x − 1 or
e1.7x − 1). We notice that the greater the debt aversion function f , the smaller

Fig. 2 Î1(rJ ) and Î2(rI) in Nash equilibrium

the value of rI = rJ at which it becomes more favourable to outsource (50% for
f(x) = e1.7x − 1, 80% for e1.6x − 1).

Outsourcing or not in Nash equilibrium? Figure 3 gives a decision criterion of
outsourcing or not, function of rI ∈ [0, 1[ in the x-axis and rJ ∈ [0, 1[ in the y-
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axis. The grey area corresponds to the region where it is optimal to issue debt,
while the black area corresponds to the region where it is optimal to outsource. As
expected, if it is optimal to outsource for a given couple (rI , rJ), then it remains
optimal to outsource for all couples (r′I , rJ) with r′I > rI . If it is optimal to issue
debt for a given couple (rI , rJ), then it remains optimal to issue debt for all couples
(rI , r

′
J) with r′J > rJ .

Fig. 3 Decision areas in Nash equilibrium
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4.2 Stackelberg equilibrium

Dependency on the interest rates rI and rJ in Stackelberg equilibrium Figure 4
below gives, for Stackelberg equilibrium, the optimal value function Î1 in Situation
1 (outsourcing) as a function of rJ ∈ [0, 1[, and Î2 in Situation 2 (debt issuance)
as a function of rI ∈ [0, 1[ and for two different functions of debt aversion (f(x) =
e1.6x − 1 or e1.7x − 1). The conclusions are the same as the ones in Figure 2 for

Fig. 4 Î1(rJ ) and Î2(rI) in Stackelberg equilibrium

Nash equilibrium, and we notice that the value functions Î1 and Î2 are slightly
greater in Stackelberg equilibrium than in Nash equilibrium. Moreover, the range
of interest rate r for which outsourcing is more favourable is slightly wider in
Stackelberg equilibrium than in Nash equilibrium (43% for f(x) = e1.7x − 1, 73%
for e1.6x−1). Indeed, being a leader in Stackelberg equilibrium, firm I has a more
favourable position to get better conditions to outsource, in comparison with Nash
equilibrium.

Outsourcing or not in Stackelberg equilibrium? Figure 5 gives a decision criteria
of outsourcing or not, function of rI in the x-axis and rJ in the y-axis. The grey
area corresponds to the region where it is optimal to issue debt, while the black
area corresponds to the region where it is optimal to outsource. In comparison
with Figure 3 dedicated to Nash equilibria, the boundary between the outsourcing
and debt issuance regions has the same shape but the outsourcing region is slighly
bigger.
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Fig. 5 Decision areas in Stackelberg equilibrium

4.3 Comparison Nash/Stackelberg equilibria

We first compare the value functions of firm I between Nash and Stackelberg
equilibria, in the situation of outsourcing the debt (Figure 6) and in the situation
of debt issuance (Figure 7). In both situations, the value function is higher in
Stackelberg equilibrium than in Nash equilibrium, which can be interpreted by the
fact that firm I has a leader position in Stackelberg equilibrium. The difference is
a little less significant in Situation 2 than in Situation 1.

Fig. 6 Value function Î1 (outsourcing) in Nash and Stackelberg equilibria
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Fig. 7 Value function Î2 (debt issuance) in Nash and Stackelberg equilibria

5 Proofs in Situation 1

5.1 Best responses in Situation 1

Let a, e and m be given and constant. Then we get the following optimization
problem for firm I:

sup
α,β,γ

E
[
ba(a)− e−u

(
bm(m)+be(e)−α−β(µ−ϕ(e)−δψ(a))−γg(m)

)]
such that α ≥ 0, γ ≥ 0, and using V (0) = −1,

E
[
e−v

(
α+(β−1)(µ−ϕ(e)−δψ(a))−e+γg(m)−m−(1+rJ)(D+a)

)]
≤ 1. (35)

Proposition 1 Let a ≥ 0, e ≥ 0 and m ≥ 0 be given and constant. Then there
exist optimal triplets (α, β, γ) for the above problem. Moreover (α, β, γ) is optimal
if and only if it satisfies: β = β∗ := v

u+v ∈ (0, 1)
and α+ γg(m) = Ce(β

∗)− u
u+v δψ(a) + e+m+ (1 + rJ)(D + a) with α ≥ 0 and

γ ≥ 0, where

Ce(β) :=
1

v
lnE

[
ev(1−β)(µ−ϕ(e))

]
. (36)

Proof We first need the following lemmas :

Lemma 2 The function h(λ) =
E[µeλµ]
E[eλµ]

is increasing, thus the equation h(uβ) =

h(v(1− β)) admits the unique solution β∗ := v
u+v ∈ (0, 1).

Proof We compute using Cauchy-Schwarz inequality(
Eeλµ

)2
h′(λ) = Eµ2eλµEeλµ −

(
Eµeλµ

)2
> 0,
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The inequality is strict since µ is not constant dP a.s.. Therefore β satisfies h(uβ) =
h(v(1−β)) if and only if uβ = −v(β−1), so that the only solution is β∗ := v

u+v ∈
(0, 1).

tu

Lemma 3 The functions Ce(β) and C(β) = Ce∗(β)(β) defined in (36) and (12)
are such that

∀β < 1, ∀a, e ≥ 0, ∀δ ∈ R, Ce(β)− δ+(1− β)ψ(a) > 0 (37)

∀β < 1, ∀a ≥ 0, ∀δ ∈ R, C(β)− δ+(1− β)ψ(a) > 0 (38)

∀β ∈ R, C(β) ≥ (1− β)
(
E[µ] − ϕ(e∗(β))

)
(39)

Proof Since v > 0, Ce(β) − δ+(1 − β)ψ(a) = 1
v lnE

[
ev(1−β)(µ−ϕ(e)−δ+ψ(a))

]
and

µ−ϕ(e)− δ+ψ(a) > 0 a.s., the two first statements are consequences of the mono-
tonicity of x 7→ exp v(1−β)x. The last one is a consequence of Jensen’s inequality.

tu

Let a, e and m be given and Cop = µ− ϕ(e)− δψ(a), we introduce:

K(α, β, γ) := −E
[
e−u

(
bm(m)+be(e)−α−βCop−γg(m)

)]
E :=

{
(α, β, γ) ∈ R3; E

[
e−v

(
α+(β−1)Cop−e+γg(m)−m−(1+rJ)(D+a)

)]
≤ 1

}
.

We will first solve the problem of maximization of K on E, forgetting about the
constraints α ≥ 0 and γ ≥ 0, and we will then see that it allows to solve the
original constrained problem. Let us therefore consider the following problem:
sup(α,β,γ)∈E K(α, β, γ). Since K is concave and E is a closed convex set, the first
order conditions for the Lagrangian associated to this problem are also sufficient
conditions. The Lagrangian is given by:

L(α, β, γ, λ) := −E
[
e−u

(
bm(m)+be(e)−α−βCop−γg(m)

)]
−λ
(
E
[
e−v

(
α+(β−1)Cop−e+γg(m)−m−(1+rJ)(D+a)

)]
− 1
)
.

Hypothesis (2) implies that L is differentiable and the following are null:

∂L

∂α
= −E

[
ue−u()

]
+ λE

[
ve−v()

]
, (40)

∂L

∂β
= −E

[
ue−u()Cop

]
+ λE

[
ve−v()Cop

]
, (41)

∂L

∂γ
= −E

[
ue−u()g(m)

]
+ λE

[
ve−v()g(m)

]
. (42)

Since g(m) is a constant, equation (40) implies equation (42). Furthermore, since
Cop = µ−ϕ(e)−δψ(a) > 0, then λ > 0 and the constraint is always binding. This
is natural since K is decreasing with respect to α, β and γ, while

(α, β, γ) 7→ −E
[
e−v

(
α+(β−1)Cop−e+γg(m)−m−(1+rJ)(D+a)

)]



Reducing the debt 21

is increasing with respect to α, β and γ. Therefore, at an interior point of E
denoted (α, β, γ), for sufficiently small ε > 0, for example (α, β− ε, γ) is still in E,
while K(α, β − ε, γ) > K(α, β, γ), so that (α, β, γ) cannot be a maximum of K.
Therefore we also have:

E
[
e−v

(
α+(β−1)Cop−e+γg(m)−m−(1+rJ)(D+a)

)]
= 1. (43)

Combining (40) and (41), we get:

E
[
µeuβµ

]
E
[
e−v(β−1)µ

]
= E

[
euβµ

]
E
[
µe−v(β−1)µ

]
.

This equation is equivalent to h(uβ) − h(v(1 − β) = 0 which admits the unique
solution β∗ = v

u+v ∈ (0, 1) (cf. Lemma 2).
We have

E
[
ev(1−β∗)(µ −ϕ(e)−δψ(a))

]
= ev(Ce(β

∗)− u
u+v

δψ(a)), (44)

which together (43) yields the following necessary and sufficient condition for op-
timality:

α+ γg(m) = Ce(β
∗)− u

u+ v
δψ(a) + e+m+ (1 + rJ)(D + a). (45)

Since 1− β∗ > 0, by (37), Ce(β
∗)− u

u+v δψ(a) > 0, Ce(β
∗)− u

u+v δψ(a) + e+m+
(1 + rJ)(D + a) > 0 and the set
{(α, γ) ∈ [0,+∞)2, α+ γg(m) = Ce(β

∗)− u
u+v δψ(a) + e+m+ (1 + rJ)(D + a)}

is not empty. Therefore the optimal (α, β, γ) for the problem:

sup
(α,β,γ)∈E∩(R+×R×R+)

K(α, β, γ),

are exactly the elements of{
(α, β, γ) ∈ R+ × R× R+; β =

v

u+ v
,

α+ γg(m) = Ce(β)− u

u+ v
δψ(a) + e+m+ (1 + rJ)(D + a)

}
.

tu

5.2 Nash equilibrium in Situation 1

Proof of Lemma 1 The function g is assumed to be increasing, strictly concave
and such that g′(0) = ∞, g′(∞) = 0 and (5) holds. Since g is increasing and
concave, we compute for any x ∈ [0,m]:

g(m)− g(x) =

∫ m

x

g′(u)du ≥ (m− x)g′(m).

Since g is strictly concave and g′(∞) = 0, g′(m) > 0 and we have for m ≥ x:

g(m)

g′(m)
−m ≥ g(x)

g′(m)
− x.
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By (5) and monotonicity of g, for x > m0, g(x) > 0 and limm→+∞
g(x)
g′(m)−x = +∞

so that limm→+∞
g(m)
g′(m) −m = +∞. Since G′(m) = − gg′′(m)

(g′(m))2 has the same sign

as g(m) by strict concavity of g, one easily concludes. tu

Proof of Theorem 1 The characterization conditions (15) and (16) for a Nash
equilibrium follow from the optimal expressions (10) and Proposition 1. Thus,
the only thing to check is the existence of an infinite number of solutions in
R+ × R× R+ × R+ × R+ × R+ to these equations.
By (38) and since (1 + rJ)(D + â) + ê > 0,

C(β̂) + (1 + rJ)(D + â) + ê− u

u+ v
δψ(â) > 0.

Therefore there exists infinitely many couples (α,m) ∈ R2
+ such that

α+G(m) = C(β̂) + (1 + rJ)(D + â) + ê− u

u+ v
δψ(â)

namely the couples
(
C(β̂) + (1 + rJ)(D + â) + ê− u

u+v δψ(â)−G(x), x
)

where x ∈

[0, G−1(C(β̂) + (1 + rJ)(D + â) + ê− u
u+v δψ(â))]. tu

5.3 Stackelberg equilibrium in Situation 1, firm I is leader

As a preliminary, we prove Proposition 2, useful for Stackelberg equilibria in both
situations.

Proposition 2 Equation (27) admits at least one solution β̂. Moreover, all solu-
tions are smaller than v

u+v .

Proof Let us recall (27): h(uβ) − h(v(1 − β)) = S(β). By Lemma 2, as β goes
from −∞ to +∞, the left-hand side of this equation is increasing from h(−∞)−
h(+∞) < 0 to h(+∞)− h(−∞) > 0 and is null for β = v

u+v .

For β < 1, since ϕ′(e∗(β)) = 1
1−β , we have S(β) = (ϕ′(e∗(β)) + (be)′(e∗(β)) −

1) (ϕ′(e∗(β)))2

ϕ′′(e∗(β)) so that, by concavity of ϕ, the sign of S(β) is equal to the one of

1−ϕ′(e∗(β))− (be)′(e∗(β)). Remember that when β goes from −∞ to 1, e∗(β) is
decreasing from +∞ to 0, ϕ and be are concave, so β 7→ 1−ϕ′(e∗(β))−(be)′(e∗(β))
is decreasing, from 1 (ϕ′(+∞) = (be)′(+∞) = 0) to −∞ (ϕ′(0) = (be)′(0) = +∞).
Since ϕ′+(be)′ is monotonic, there exists a unique β0 such that ϕ′(β0)+(be)′(β0) =
1, so β < β0 ⇒ S(β) > 0, β > β0 ⇒ S(β) < 0. As a consequence, there exists
a solution β̂ to (27). For β ≥ 0, S(β) is negative since in (24), the numerator is
positive whereas the denominator is negative by concavity of ϕ. Hence β0 < 0.
Moreover S( v

u+v ) < 0, so any solution β̂ belongs to (β0,
v

u+v ). tu

Proof of Theorem 5
Firm I has to find (α, β, γ) maximising

ba(a∗(β))− E
[
e−u

(
bm(m∗(γ))+be(e∗(β))−α−β(µ −ϕ(e∗(β))−δψ(a∗(β)))−γg(m∗(γ))

)]
.
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Since the inverse function of m∗(γ) = (g′)−1(1/γ) is the increasing bijection
γ∗(m) = 1

g′(m) from R+ onto itself, the maximisers are the triplets (α, β, γ∗(m))

with (α, β,m) maximising

Ĩ1(α, β,m) := ba(a∗(β))−E
[
e
−u
(
bm(m)+be(e∗(β))−α−β(µ −ϕ(e∗(β))−δψ(a∗(β)))− g

g′ (m)
)]

under the constraint

−J̃1(α, β,m) :=

E
[
e
−v(α+(β−1)(µ −ϕ(e∗(β))−δψ(a∗(β)))−e∗(β)+ g

g′ (m)−m−(1+rJ)(D+a∗(β)))
]
≤ 1,

where, by a slight abuse of notations, we still denote by Ĩ1 and J̃1 the functions
obtained by applying the change of variable (α, β, γ) → (α, β,m) to the ones
introduced in Section 3.4.1. We also recall the application C : R → R defined in
(12)

C(β) =
1

v
lnE

[
ev(1−β)(µ −ϕ◦e∗(β))

]
.

Setting

A :=
{

(α, β,m) ∈ R+ × R× R+; − J̃1(α, β,m) ≤ 1}, (46)

the optimization problem for firm I then writes:

sup
(α,β,m)∈A

Ĩ1(α, β,m).

We will prove the existence of a maximizer for this problem, and therefore of a
Stackelberg equilibrium, by checking that we can restrict the set A to a compact
subset. Notice first that A 6= ∅. In fact, one can easily check that for any β ∈ R
and m ≥ 0, one can choose α large enough so that (α, β,m) ∈ A.

Proposition 3 We have sup(α,m)∈R2
+
Ĩ1(α, β,m) → −∞ when β → ∞. More-

over, there exists β̄ ∈ R, not depending on v > 0, such that the supremum over A
is attained if and only if the supremum over A ∩ {β ∈ (−∞, β̄]} is attained, and
both supremum are equal.

Proof To prove this proposition, we need the following result which applies to
functions ϕ and ψ :

Lemma 4 For any increasing, strictly concave C1 and bounded function φ,
φ′(x) = ◦(1/x) when x→∞ and y(φ′)−1(y)→ 0 when y → 0.

Proof Integrating by parts, we get for x ≥ 1,∫ x

1

uφ′′(du) = xφ′(x)− φ′(1)− φ(x) + φ(1) (47)

where φ′′(du) denotes the negative measure equal to the second order distribu-
tion derivative of φ. Since φ is increasing and concave, the terms −xφ′(x) and∫ x
1
uφ′′(du) are non-positive on [1,+∞). The boundedness of φ then implies their
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boundedness on [1,+∞). Since
∫ x
1
uφ′′(du) and φ(x) are monotonic and bounded,

they admit finite limits when x → ∞. By (47), xφ′(x) admits a finite limit as
well, denoted `. Since φ is bounded, φ′ is integrable on [1,+∞), which implies
` = 0 and gives the result. Let x = (φ′)−1(y). When y → 0, x goes to ∞ and
y(φ′)−1(y) = φ′(x)x goes to 0.

tu
Since bm is such that bm′(∞) = 0, limm→+∞m − bm(m) = +∞ thus, using

the first assertion in Lemma 1,

lim
m→+∞

g

g′
(m)− bm(m) = +∞. (48)

Hence e
u
(
g
g′ (m)−bm(m)

)
goes to infinity when m→∞ and there exists a constant

c > 0 not depending on v > 0 such that for any m ≥ 0, e
u
(
g
g′ (m)−bm(m)

)
≥ c.

For any β ≥ 1, e∗(β) = 0 and since Ĩ1 is decreasing with respect to α, we have for
(α,m) ∈ R2

+,

Ĩ1(α, β,m) ≤ Ĩ1(0, β,m)

≤ ba(a∗(β))− ce−ub
e(0) E

[
euβ(µ −ϕ(0)−δψ(a∗(β)))

]
→ −∞ when β →∞. (49)

Indeed, if δ > 0, then a∗(β) = (ψ′)−1
(

1+rJ
(δ(1−β))+

)
= 0 for β ≥ 1 and the result is

obvious.
Otherwise for δ ≤ 0, ba(a∗(β)) = o(β) when β → ∞ (indeed ba(x) = o(x) when
x → ∞ and a∗(β) = o(β) when β → ∞, see Lemma 4), µ − ϕ(0)− δψ(a∗(β)) >
µ −ϕ(+∞)− δ+ψ(+∞) > 0. Therefore euβ(µ −ϕ(0)−δψ(a∗(β))) goes to +∞ faster
than ba(a∗(β)) and, by Fatou Lemma,

lim inf
β→∞

E
[
euβ(µ −ϕ(0)−δψ(a∗(β)))−ln(ba(a∗(β)))

]
=∞

so that (49) holds.
Since ((1 + rJ)D, 1, 0) ∈ A for any v > 0, one deduces the existence of β̄ ∈ R not
depending on v such that

sup
(α,β,m)∈R+×(β̄,+∞)×R+

Ĩ1(α, β,m) < sup
(α,β,m)∈A

Ĩ1(α, β,m)

and the supremum over A is attained if and only if the supremum over
A ∩ {β ∈ (−∞, β̄]} is attained. Moreover, if the suprema are attained, they are
equal. tu

We now decompose the optimisation on A ∩ {β ∈ (−∞, β̄]} according to the
positivity of α.

Lemma 5 Let

B :=
{

(α, β,m) ∈ R+ × (−∞, β̄]× R+; − J̃1(α, β,m) = 1
}
, (50)

C :=
{

(0, β,m); β ∈ (−∞, β̄], m ≥ 0, − J̃1(0, β,m) ≤ 1
}
. (51)

The supremum over A is attained if and only if the supremum over B ∪ C is
attained.
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Proof Since Ĩ1 is decreasing with respect to α and J̃1 is continuous, if α > 0 and
−J̃1(α, β,m) < 1, then there exists ε > 0 such that Ĩ1(α− ε, β,m) > Ĩ1(α, β,m),
while −J̃1(α−ε, β,m) ≤ 1. Therefore the supremum over A∩{α > 0} is the same
as the supremum over

B̃ :=
{

(α, β,m) ∈ (0,+∞)× (−∞, β̄]× R+; J̃1(α, β,m) = −1
}
.

Noticing then that A is closed and that B := Cl(B̃), we easily conclude. tu

Lemmas 6 and 7 are devoted to the supremum over B. In Lemma 6, we check
that the supremum is attained on a compact subset K not depending on v > 0. In
Lemma 7, we derive optimality conditions satisfied by a maximizer with positive
α.

Lemma 6 The function k defined in (26):

k : β → eu(Id−be)◦e∗(β)e−uδψ◦a
∗(β)eu(1+rJ)(D+a∗(β))euC(β)E

[
euβ
(
µ−ϕ◦e∗(β)

)]
depends on v > 0 through the function C(β) defined in (12), goes to ∞ uniformly
in v > 0 when β → −∞.
Moreover, in the set B, α is a continuous function of (β,m) and there exists a
compact set K ⊂ B not depending on v > 0 such that supB Ĩ

1 = supK Ĩ
1. In

particular the supremum on B is attained.

Proof Let us consider supB Ĩ
1. Notice that C(β) given by (12) depends on v > 0.

Since J̃1(α, β,m) = −1 on B, we know that

α = α(β,m) := C(β)−(1−β)δψ(a∗(β))+e∗(β)+m− g

g′
(m)+(1+rJ)(D+a∗(β)),

so that
Ĩ1(α(β,m), β,m) = ba(a∗(β))− eu(Id−bm)(m)k(β). (52)

In Ĩ1(α(β,m), β,m), we have ba(a∗(β)) minus the product of two positive func-
tions, the first one depending only on m, the second one, k, only on β. Since
(bm)′(∞) = 0, eu(Id−bm)(m) → ∞ when m → ∞, therefore the first function is
bounded from below by a positive constant c and goes to infinity when m goes to
infinity.

Let us now examine the function k. By Jensen’s inequality, E
[
euβ(µ−ϕ(e∗(β)))

]
≥

euβ(E[µ]−ϕ(e∗(β))); then, using (39) and eu(1+rJ)(D+a∗(β)) ≥ 1 it yields

k(β) ≥ eu(Id−be)(e∗(β))e
u

(
E[µ] −ϕ(e∗(β))−δψ(a∗(β))

)
.

Using E [µ ] ≥ ϕ(x)+δ+ψ(y) for any x, y, we deduce that k(β) ≥ eu(Id−be)◦(ϕ′)−1( 1

(1−β)+
)

where the right-hand side does not depend on v > 0 and goes to infinity when
β 7→ −∞ since be(x) = o(x) when x→∞ (recall that (be)′(∞) = 0). Finally using
ba(x) = o(x) and (ϕ′)−1(x) ∼ (ψ′)−1(x) for x→ 0, we conclude when β → −∞:

Ĩ1(α, β,m) ≤ ba ◦ (ψ′)−1(
1 + rJ

δ+(1− β)
)− ceu(Id−be)◦(ϕ′)−1( 1

1−β ) → −∞.
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Since α(1, 0) = (1 + rJ)D > 0 and Ĩ1(α(1, 0), 1, 0) do not depend on v > 0 and
(α(1, 0), 1, 0) ∈ B for any v > 0, we deduce the existence of β > −∞ and m̄ in

[0,+∞) not depending on v such that supB Ĩ
1 = supB∩{β∈[β,β̄],m∈[0,m̄]} Ĩ

1.

To conclude that supB Ĩ
1 is attained on a compact K ⊂ B not depending on v,

one still has to make sure that α remains bounded when v varies. Since for any α,

sup
β∈[β,β̄],m∈[0,m̄]

Ĩ1(α, β,m) ≤ sup
β∈[β,β̄]

ba(a∗(β))

− euα inf
β∈[β,β̄],m∈[0,m̄]

E
[
e
−u
(
bm(m)+be(e∗(β))−β(µ −ϕ(e∗(β))−δψ(a∗(β)))− g

g′ (m)
)]

where the right-hand side tends to −∞ as α → ∞, one concludes that there ex-
ists a compact set K ⊂ B not depending on v > 0 such that supB Ĩ

1 = supK Ĩ
1. tu

Lemma 7 Let (α̂, β̂, m̂) with α̂ > 0 be such that the maximum on B is attained
at (α̂, β̂, m̂). Then necessarily

m̂ = [(bm)′]−1(1) > 0, (53)

and there are two different cases, depending on the sign of δ :
• If δ > 0,

h(uβ̂)− h(v(1− β̂)) = S(β̂) + S̃(β̂), and β̂ < 1. (28)

• If δ < 0,
h(uβ̂)− h(v(1− β̂)) = S(β̂), and β̂ < 1, (27)

or
h(uβ̂)− h(v(1− β̂)) = S̃(β̂), and β̂ ≥ 1. (29)

with h, S and S̃ respectively defined in (23), (24) and (25).

Proof Let (α̂, β̂, m̂) be such that the maximum on B is attained at (α̂, β̂, m̂).
Since (bm)′(0) = +∞, m 7→ m − bm(m) is decreasing in a neighborhood of 0,
so that from (52), m̂ > 0. Assume moreover that α̂ > 0. Then the mapping
(β,m) 7→ Ĩ1(α(β,m), β,m) where α(β,m) is defined at the beginning of the proof
of Lemma 6 admits a local maximum at (β̂, m̂) and therefore the first order con-
ditions are satisfied (notice that β̄ may be increased), i.e. ∂

∂β Ĩ
1(α(β̂, m̂), β̂, m̂) =

∂
∂m Ĩ

1(α(β̂, m̂), β̂, m̂) = 0. The second one gives

m̂ = [(bm)′]−1(1) > 0. (54)

The computation of β̂ is more tricky and depends on the coefficient δ.

1) δ > 0: ∂
∂β Ĩ

1(α(β̂, m̂), β̂, m̂) =
• − eu(Id−bm)(m̂)E

[
uνeu[βµ+C(β)]

]
if β ≥ 1

•(ba)′ ◦ a∗(β) 1+rJ
δ(1−β)2ψ′′◦a∗(β)

−uE
(
β(1+rJ)
β−1 (a∗)′(β)− β

1−β (e∗)′(β)− (be)′ ◦ e∗(β)(e∗)′(β) + ν
)
eu(Id−bm)(m̂)

eu[(Id−be)◦e∗(β)−δψ◦a∗(β)+β(µ−ϕ◦e∗(β))+(1+rJ)(D+a∗(β))+C(β)] if β < 1
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where ν := µ− h(v(1− β)). Then we get

∂

∂β
Ĩ1(α(β̂, m̂), β̂, m̂) = 0 iff

{
h(uβ)− h(v(1− β)) = 0 if β ≥ 1,

h(uβ)− h(v(1− β)) = S(β) + S̃(β) if β < 1,

recalling

S(β) :=

β
1−β + (be)′ ◦ (ϕ′)−1

(
1

1−β

)
(1− β)2ϕ′′ ◦ (ϕ′)−1

(
1

1−β

) .

S̃(β) :=
1 + rJ

δ(1− β)2(ψ′′)(a(β))

(
(1 + rJ)

β

1− β +
(ba)′(a(β))

ueu(Id−bm)(m̂)k(β)

)
As seen in Lemma 2, for β ≥ 1, h(uβ)−h(v(1−β)) > 0, thus β̂ < 1 and we study
the equation (28)

h(uβ)− h(v(1− β)) = S(β) + S̃(β), for β < 1.

The left hand side is positive for β > v
u+v . The functions S and S̃ are negative on

[0, 1] thus β̂ < v
u+v .

2) δ < 0: ∂
∂β Ĩ

1(α(β̂, m̂), β̂, m̂) =

•(ba)′ ◦ a∗(β) 1+rJ
δ(1−β)2ψ′′◦a∗(β) − uE

[
(β(1+rJ)

β−1 (a∗)′(β) + ν)

×eu[(Id−bm)(m̂)−be(0)−δψ◦a∗(β)+β(µ−ϕ(0))+(1+rJ)(D+a∗(β))+C(β)]
]

if β ≥ 1

• − uE
[(
− β

1−β (e∗)′(β)− (be)′ ◦ e∗(β)(e∗)′(β) + ν
)

×eu[(Id−bm)(m̂)+(Id−be)◦e∗(β)−δψ(0)+β(µ−ϕ◦e∗(β))+(1+rJ)D+C(β)]
]

if β < 1.

Thus,

∂

∂β
Ĩ1(α(β̂, m̂), β̂, m̂) = 0 iff

{
h(uβ)− h(v(1− β)) = S̃(β) if β ≥ 1

h(uβ)− h(v(1− β)) = S(β) if β < 1.

Thus the optimal β on B is either the solution of equation (27) (which is less
than v

u+v ) or the solution of

h(uβ)− h(v(1− β)) = S̃(β), for β ≥ 1.

tu
The next lemma is devoted to the optimisation over C.

Lemma 8 The supremum of (α, β,m) 7→ Ĩ1(α, β,m) on C defined in (51) is at-
tained.
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Proof Let us then consider supC Ĩ
1. We have α = 0 on C. Since (bm)′(∞) = 0

and, by Lemma 1, G(m) = g
g′ (m) − m is increasing on [m0,+∞), the mapping

m 7→ bm − g(m)
g′(m) is decreasing for sufficiently large m. Thus there is a constant

m̄ ∈ [m0,+∞) not depending on v > 0 such that for any β ∈ R, m 7→ Ĩ1(0, β,m)
is decreasing for m ≥ m̄. Therefore, writing

C1 := C ∩ {m ∈ [0, m̄]} and C2 := C ∩ {m ≥ m̄ and J̃1(0, β,m) = −1},

the supremum of Ĩ1 over C is attained iff the supremum of Ĩ1 over C1 ∪ C2 is
attained.

(i) We prove that C1 is compact. The condition −J̃1(0, β,m) ≤ 1 is equivalent
to

C(β)− (1− β)δψ(a∗(β)) + e∗(β) +m− g

g′
(m) + (1 + rJ)(D + a∗(β)) ≤ 0.

If β < 1, by (38), it implies e∗(β) +m− g
g′ (m) + (1 + rJ)(D + a∗(β)) ≤ 0. Since

limβ→−∞ e∗(β) = +∞ and a∗(β) ≥ 0, while m ∈ [0, m̄], this implies that there
exists β ∈ R not depending on v > 0, such that C1 ⊂ {0} × [β, β̄]× [0, m̄], β̄ being

defined in Proposition 3. Since C1 is closed by continuity of J̃1, it is compact and
therefore the supremum over C1 is attained.

(ii) On C2, we have

C(β)− (1− β)δψ(a∗(β)) + e∗(β) + (1 + rJ)(D + a∗(β)) =
g(m)

g′(m)
−m = G(m).

Since m ≥ m̄ ≥ m0, using Lemma 1 and the inverse function G−1, m = H(β) :=
G−1

[
C(β) − (1 − β)δψ(a∗(β)) + e∗(β) + (1 + rJ)(D + a∗(β))

]
. Thus we have

supC2 Ĩ
1 = supC2∩{β∈(−∞,β̄]} Ĩ

1
(
0, β,H(β)

)
.

Let us now prove that Ĩ1(0, β,H(β)) → −∞ uniformly in v > 0 when β → −∞.
When β → −∞, e∗(β) → ∞, while a∗(β) ≥ 0, C(β) − (1 − β)δψ(a∗(β)) ≥ 0
by (38), so that C(β) − (1 − β)δψ(a∗(β)) + e∗(β) + (1 + rJ)(D + a∗(β)) → ∞
uniformly in v > 0, and therefore m = H(β)→∞. We recall that bm(m) = ◦(m),
a∗(β) = ◦(−β) and e∗(β) = ◦(−β) (see Lemma 4) and be ◦ e∗(β) = ◦(−β), when
β → −∞. Using

g ◦H(β)

g′ ◦H(β)
−H(β) = C(β)− (1− β)δψ(a∗(β)) + e∗(β) + (1 + rJ)(D + a∗(β)),

we deduce that for all v > 0,

−u
(
bm ◦H(β) + be(e∗(β))− β(µ − ϕ(e∗(β))− δψ(a∗(β)))− g ◦H(β)

g′ ◦H(β)

)
=− u

(
bm ◦H(β)−H(β) + (be − Id)(e∗(β))− β(µ − ϕ(e∗(β))− δψ(a∗(β)))

(55)

− C(β) + (1− β)δψ(a∗(β))− (1 + rJ)(D + a∗(β))
)

≥ −uβ (E[µ] − µ ) + o(−β), as − β →∞, (56)
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where the last inequality follows from (39) , o(−β) being uniform in v > 0.
Since µ is not P constant,

∃ε > 0,∃D ⊂ Ω s.t. P(D) ≥ ε and µ+ ε ≤ E[µ] on D. (57)

Using (56), we compute for −β sufficiently large not depending on v > 0 :

Ĩ1(0, β,H(β)) ≤ ba(a∗(β))− E[1De
−uβ

2
(E[µ] −µ)] ≤ ba(a∗(β))− εe−

uβε
2 .

Since ba(a∗(β)) = o(−β) when β → −∞, the right-hand side goes to−∞ uniformly
in v > 0 when β → −∞. Since (0, 1, G−1((1 + rJ)D)) ∈ C for any v > 0 and
Ĩ1(0, 1, G−1((1 + rJ)D)) does not depend on v > 0, one deduces the existence of
β > −∞ such that if supC Ĩ

1 = supC2 Ĩ
1 then supC Ĩ

1 = supC2∩{β∈[β,β̄]} Ĩ
1. Now

sup
β∈[β,β̄]

Ĩ1(0, β,m) ≤ sup
β∈[β,β̄]

ba(a∗(β))

− eu
(
g
g′ (m)−bm(m)

)
inf

β∈[β,β̄]
E
[
e−u

(
be(e∗(β))−β(µ −ϕ(e∗(β))−δψ(a∗(β)))

)]
where, by (48), the right-hand-side tends to −∞ as m → ∞. Hence there ex-
ists m̄ ∈ [0,+∞) not depending on v > 0 such that if supC Ĩ

1 = supC2 Ĩ
1 then

supC Ĩ
1 = supC2∩{β∈[β,β̄],m∈[0,m̄]} Ĩ

1. tu

To conclude the proof of Theorem 5, Lemmas 5, 6 and 8 prove that the maxi-
mum of Ĩ1 over A is attained at (α̂, β̂, m̂) which belongs either to B or to C, and
a Stackelberg equilibrium exists. Moreover if α̂ > 0, then (α̂, β̂, m̂) ∈ B and the
maximum of Ĩ1 over B is attained at (α̂, β̂, m̂). The equilibrium characterization
given in the statement of Theorem 5 then follows from Lemma 7. tu

6 Proofs in Situation 2

6.1 Best responses in Situation 2

Let e ≥ 0 and m ≥ 0 be given and constant. We recall that F (a) = ba(a)− f((1 +
rI)(D + a)) is assumed to be strictly concave, F ′(0) > 0, possibly infinite, and
F ′(∞) = −∞. We introduce

Ka(α, β, γ) := −E
[
e−u

(
bm(m)+be(e)−α−βCop−γg(m)

)]
Then we get the following optimization problem:

supa,α,β,γ F (a) +Ka(α, β, γ) with a ≥ 0, α ≥ 0, γ ≥ 0, (58)

and E
[
e−v

(
α+(β−1)(µ −ϕ(e)−δψ(a))−e+γg(m)−m

)]
≤ 1.

We have the following result:
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Proposition 4 Let e ≥ 0 and m ≥ 0 be given and constant and let β∗ := v
u+v .

There exists optimal controls and (a, α, β, γ) is optimal if and only if it satisfies:

β = β∗, a ∈ arg maxa≥0

[
F (a)− e−uδψ(a)e−u(bm(m)+be(e)−e−m)e(u+v)Ce(β

∗)
]

and

α+ γg(m) = Ce(β
∗)− u

u+ v
δψ(a) + e+m (59)

with α ≥ 0 and γ ≥ 0 and Ce(β) := 1
v lnE

[
ev(1−β)(µ−ϕ(e))

]
.

Last, if δ ≥ 0, then a∗ > 0 and is unique.

Remark 5 Notice that β∗ ∈ (0, 1) and any optimal control (a, α, β, γ) is such that
α+ γ > 0.

Proof Let a ≥ 0 be given for the moment and

Ea :=
{

(α, β, γ) ∈ R3; E
[
e−v

(
α+(β−1)Cop−e+γg(m)−m

)]
≤ 1

}
.

In comparison with the definition of the set E introduced in the proof of Propo-
sition 1, the term (1 + rJ)(D + a) does not appear in the constraint defining the
set Ea.
We will first solve, for fixed a, the problem of maximization of K on Ea, following
the same steps as in Proposition 1 : the optimal (α∗, β∗, γ∗) for the problem

sup
(α,β,γ)∈Ea∩(R+×R×R+)

K(α, β, γ),

are exactly the elements of{
(α, β, γ) ∈ R+×R×R+; β =

v

u+ v
, α+ γg(m) = Ce(β)− u

u+ v
δψ(a) + e+m

}
and the constraint is always binding. Using β∗ = v

u+v , we get E[euβ
∗(µ−ϕ(e))] =

evCe(β
∗) so that, with the equality α∗ + γ∗g(m) = Ce(β

∗)− u
u+v δψ(a) + e+m,

Ka(α∗, β∗, γ∗) = −e−uδψ(a)e−u(bm(m)+be(e)−e−m)e(u+v)Ce(β
∗).

Let us then consider supa≥0 F (a)+Ka(α∗, β∗, γ∗). Since F (a)+Ka(α∗, β∗, γ∗) ≤
F (a) and lima→∞ F (a) = −∞, a 7→ F (a) + Ka(α∗, β∗, γ∗) attains its maximum
on R+, either at a∗ = 0 or at a point where the first order condition is satisfied. If
δ ≥ 0, this function is strictly concave, increasing for small a, so that there exists
a unique maximum a∗ > 0 that is the unique solution of

F ′(a)− uδψ′(a)Ka(α∗, β∗, γ∗) = 0.

tu

Remark 6 If δ < 0, then the function a 7→ F (a) +Ka(α∗, β∗, γ∗) is decreasing for
small a, since ψ′(0) = +∞, so that a = 0 is a local maximum. So the maximum is
attained either at a∗ = 0 or at a solution of F ′(a)+uδBe(β

∗,m)ψ′(a)e−uδψ(a) = 0.
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6.2 Nash equilibrium

From the previous results, the proof of Theorem 2 follows easily.
Proof of Theorem 2
The characterization conditions (17), (18) and (19) follow from Proposition 4 and
the optimal expressions (11). Thus, the only thing to check is that there exists an
infinite number of solutions to these equations. Since β̂ < 1, by (38), C(β̂) + ê −
u
u+v δψ(â) ≥ ê > 0. Therefore there exists infinitely many couples (α,m) ∈ R2

+

such that
α+G(m) = C(β̂) + +ê− u

u+ v
δψ(â)

namely the couples
(
C(β̂) + ê− u

u+v δψ(â)−G(x), x
)

where x ∈ [0, G−1(C(β̂) +

ê− u
u+v δψ(â))]. tu

6.3 Stackelberg equilibrium in Situation 2, firm I is leader

The best response for firm J is given by (11), but now the optimization problem
for firm I has changed. We recall the continuous mappings m∗ : R+ → R+,
e∗ : R→ R+, C : R→ R and B̃ : R× R+ → R defined in (11) (12) and (14),

e∗(β) = (ϕ′)−1
(

1
(1−β)+

)
, m∗(γ) = (g′)−1(1/γ).

C(β) = 1
v lnE

[
ev(1−β)(µ −ϕ◦e∗(β))

]
.

We are now ready to prove the existence of a Stackelberg equilibrium, as stated
in Theorem 6.

Proof of Theorem 6.
Given β and γ, the optimal controls for firm J are given by e∗ and m∗. Once
again, since γ = 1

g′(m) yields a bijection between m and γ on R+, we only deal
with m. Writing:

Ĩ2(a, α, β,m) :=

F (a)− E
[
e
−u
(
bm(m)+be(e∗(β))−α−β(µ −ϕ(e∗(β))−δψ(a))− g

g′ (m)
)]
,

J̃2(a, α, β,m) := −E
[
e
−v
(
α+(β−1)(µ −ϕ(e∗(β))−δψ(a))−e∗(β)+ g

g′ (m)−m
)]
,

A :=
{

(a, α, β,m) ∈ R+ × R+ × R× R+; − J̃2(a, α, β,m) ≤ 1
}
,

the optimization problem for firm I then writes:

sup
(a,α,β,m)∈A

Ĩ2(a, α, β,m).

We will prove the existence of a maximizer for this problem, and therefore of a
Stackelberg equilibrium, by proving that we can restrict the set A to a compact
subset. Notice first that A 6= ∅. Indeed, since J̃2(a, α, 1, 0) = −e−vα, for any a ≥ 0
and α > 0, (a, α, 1, 0) ∈ A. In fact, one can easily check that for any a ≥ 0, β ∈ R
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and m ≥ 0, one can choose α large enough so that (a, α, β,m) ∈ A.

The proof will use the following lemmas, very similar to Proposition 3 and Lemmas
5, 6, 7 and 8. Nevertheless, we cannot deduce them from the previous ones because
the involved functions are not defined on the same spaces.

Lemma 9 There exists ā ∈ (0,+∞) and β̄ ∈ R not depending on v such that
the supremum over A is attained if and only if the supremum over {(a, α, β,m) ∈
A such that a ∈ [0, ā], β ∈ (−∞, β̄]} is attained.

Proof For any v > 0 and any (a, α) ∈ R+ × R+, (a, α, 1, 0) ∈ A. We have
Ĩ2(a, α, β,m) ≤ F (a). Since limx→∞ F (x) = −∞ (cf. the beginning of Subsec-
tion 6.1) there exists ā > 0 not depending on v, such that the supremum over
A is the same as the supremum over A ∩ {a ∈ [0, ā]}. Notice that Ĩ2 is decreas-
ing with respect to α, so that Ĩ2(a, α, β,m) ≤ Ĩ2(a, 0, β,m). Using (48), we get

e
u
(
g
g′ (m)−bm(m)

)
→ +∞ when m→ +∞. Therefore, there exists a constant c > 0

such that for any m ≥ 0, e
u
(
g
g′ (m)−bm(m)

)
≥ c.

On the other hand, for any β ≥ 1, since e∗(β) = 0, we compute:

Ĩ2(a, α, β,m) ≤ Ĩ2(a, 0, β,m) ≤ F (a)− c e−ub
e(0)E

[
euβ(µ −ϕ(0)−δψ(a))

]
which goes to −∞ when β →∞, uniformly in a ∈ [0, ā]. tu

Lemma 10 Let

B :=
{

(a, α, β,m) ∈ [0, ā]× R+ × (−∞, β̄]× R+; J̃2(a, α, β,m) = −1
}
, (60)

C :=
{

(a, 0, β,m); a ∈ [0, ā], β ∈ (−∞, β̄], m ≥ 0, J̃2(a, 0, β,m) ≥ −1
}
.(61)

The supremum over A is attained if and only if the supremum over B ∪ C is
attained.

Proof Since Ĩ2 is decreasing with respect to α and J̃2 is continuous, if α > 0
and −J̃2(a, α, β,m) < 1, then there exists ε > 0 such that Ĩ2(a, α − ε, β,m) >
Ĩ2(a, α, β,m), while −J̃2(a, α − ε, β,m) ≤ 1. Thus in case of optimum satisfying
α > 0, the constraint is binding. tu

Lemma 11 In set B, α is a continuous function of (a, β, γ), so there exists a
compact K ⊂ B not depending on v > 0 such that supB Ĩ

2 = supK Ĩ
2, and in

particular the maximum on B is attained.

Proof Let us consider supB Ĩ
2. Notice that C defined by (12) depends on v. Since

J̃2(a, α, β,m) = −1 on B, we have

α = α(a, β,m) := C(β)− (1− β)δψ(a) + e∗(β) +m− g

g′
(m),

therefore we have:
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sup
(a,α,β,m)∈B

Ĩ2(a, α, β,m)

= sup
{(a,β,m)∈[0,ā]×(−∞,β̄]×R+; α(a,β,m)≥0}

F (a)− e−uδψ(a)B̃(β,m)

= sup
{(a,β,m)∈[0,ā]×(−∞,β̄]×R+; α(a,β,m)≥0}

F (a)− eu(Id−bm)(m)e−uδψ(a)k̃(β) (62)

with

k̃(β) = eu(Id−be)◦e∗(β)euC(β)E
[
euβ
(
µ −ϕ◦e∗(β)

)]
.

In (62), we have F (a) minus the product of three positive functions, the first one
depending only on m, the second one only on a and the third one, k̃, only on β.
By (48), the first function eu(m−bm(m)) goes to ∞ when m→∞ so it is bounded
from below by a positive constant. Since δ+ψ is bounded form above, the second
one is also bounded from below by a positive constant.
As in Lemma 6, we prove that k̃(β) 7→ ∞ uniformly in v > 0 when β 7→ −∞. Since
(0, 0, 1, 0) ∈ B for any v > 0, we deduce the existence of m̄ ∈ [0,+∞) and β ∈
(−∞, β̄] not depending on v > 0 such that supB Ĩ

2 = supB∩{β∈[β,β̄],m∈[0,m̄] Ĩ
2.To

conclude the proof, we remark that

sup
a∈[0,ā],β∈[β,β̄],m∈[0,m̄]

Ĩ2(a, α, β,m) ≤ sup
a∈[0,ā]

F (a)

− euα inf
a∈[0,ā],β∈[β,β̄],m∈[0,m̄]}

E
[
e
−u
(
bm(m)+be(e∗(β))−β(µ −ϕ(e∗(β))−δψ(a))− g

g′ (m)
)]

tends to −∞ as α→∞. tu

Lemma 12 Assume that there exists a Stackelberg equilibrium (ê, m̂, â, α̂, β̂, γ̂)
with α̂ > 0. Then necessarily

γ̂ = 1
g′(m̂) , where m̂ = [(bm)′]−1(1) > 0, (63)

β̂ < v
u+v and β̂ is a solution of (27). (64)

Proof If there exists a Stackelberg equilibrium (ê, m̂, â, α̂, β̂, γ̂), then the supre-
mum of Ĩ2 on A is attained at (â, α̂, β̂, γ̂). Lemma 10 and the hypothesis α̂ >
0 yield that J̃2(â, α̂, β̂, γ̂) = −1. Since (bm)′(0) = +∞, m 7→ m − bm(m) is
decreasing in a neighborhood of 0, so that from (62), m̂ > 0. The mapping
(β,m) 7→ Ĩ2(â, α(â, β,m), β,m) where α(a, β,m) is the function introduced at the
beginning of the proof of Lemma 11 admits a local maximum at (β̂, m̂). There-
fore the first order conditions are satisfied (notice that β̄ may be increased), i.e.
∂
∂β Ĩ

2(â, α(â, β̂, m̂), β̂, m̂) = ∂
∂m Ĩ

2(â, α(â, β̂, m̂), β̂, m̂) = 0. The partial derivative
with respect to m yields

m̂ = [(bm)′]−1(1) > 0.

On the other hand, using e∗(β)) = (ϕ′)−1( 1
(1−β)+ ), we compute:

C′(β) =

−
E[µ ev(1−β)µ ]
E[ev(1−β)µ ]

= ϕ(0)− h(v(1− β)) if β ≥ 1

ϕ ◦ e∗(β)− (e∗)′(β)− h(v(1− β)) if β < 1.
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Then:

k̃′(β) =


E
[
u
(
µ+ ϕ(0) − h(v(1− β))

)
eu
(
βµ +C(β)

)]
if β ≥ 1

uE
[(
− β

1−β (e∗)′(β)− (be)′ ◦ e∗(β)(e∗)′(β) + µ − h(v(1− β))
)

eu
(
(Id−be)◦e∗(β)+β(µ −ϕ◦e∗(β))+C(β)

)]
if β < 1.

As seen in Lemma 2, for β ≥ 1, h(uβ) − h(v(1 − β)) > 0, therefore k̃′(β) > 0 for
β ≥ 1. As a consequence, the equation ∂

∂β Ĩ
2 = k̃′(β) = 0 implies that β̂ solves

(27). By Proposition 2, β̂ < u
u+v . tu

Lemma 13 The supremum of (a, α, β,m) 7→ Ĩ2(a, α, β,m) on C defined by (61)
is attained.

Proof Like in the proof of Lemma 8, there exists m̄ ≥ m0 not depending on v > 0
such that Ĩ2 is decreasing with respect to m on [m̄,+∞). Thus in case m ≥ m̄,
the optimum has to bind the constraint. Therefore, writing

C1 := {(a, 0, β,m) ∈ C : m ∈ [0, m̄]},

C2 := {(a, 0, β,m) ∈ C : m ≥ m̄ and J̃2(a, 0, β,m) = −1},
the supremum of Ĩ2 over C is attained iff the supremum of Ĩ2 over C1 ∪ C2 is
attained.

(i) We prove that C1 is compact. The condition−J̃2(a, 0, β,m) ≤ 1 is equivalent
to C(β) − (1 − β)δψ(a) + e∗(β) + m − g

g′ (m) ≤ 0. For β < 1, by (38), it implies

e∗(β)+m− g
g′ (m) ≤ 0. Since limβ→−∞ e∗(β) = +∞, while m ∈ [0, m̄], this implies

the existence of β ∈ (−∞, β̄] such that C1 ⊂ [0, ā]× {0} × [β, β̄]× [0, m̄] where m̄

and β do not depend on v. Since C1 is closed by continuity of J̃2, it is compact
and therefore the supremum over C1 is attained.

(ii) On C2, we have C(β)−(1−β)δψ(a)+e∗(β) = g(m)
g′(m)−m = G(m) with m ≥

m̄ ≥ m0 and therefore, by Lemma 1, m = H(a, β) := G−1
(
C(β)− (1− β)δψ(a) +

e∗(β)
)
. We thus have supC2 Ĩ

2 = supC2∩{a∈[0,ā],β∈(−∞,β̄]} Ĩ
2
(
a, 0, β,H(a, β)

)
.

Adapting the proof of Lemma 8, we check that when β → −∞, Ĩ2(a, 0, β,H(a, β))→
−∞ uniformly in (a, v) ∈ [0, ā]× (0,+∞).
Since (0, 0, 1, G−1(0)) ∈ C for any v > 0 and Ĩ2(0, 0, 1, G−1(0)) does not depend
on v > 0, one deduces the existence of β ∈ (−∞, β̄] not depending on v > 0 such

that if supC Ĩ
2 = supC2 Ĩ

2 then supC Ĩ
2 = supC2∩{β∈[β,β̄]} Ĩ

2. Now

sup
a∈[0,ā],β∈[β,β̄]

Ĩ2(a, 0, β,m) ≤ sup
a∈[0,ā]

F (a)

− eu
(
g
g′ (m)−bm(m)

)
inf

a∈[0,ā],β∈[β,β̄]
E
[
e−u

(
be(e∗(β))−β(µ −ϕ(e∗(β))−δψ(a))

)]
where, by (48), the right-hand-side tends to −∞ as m → ∞. Hence there ex-
ists m̄ ∈ [0,+∞) not depending on v > 0 such that if supC Ĩ

2 = supC2 Ĩ
2 then

supC Ĩ
2 = supC2∩{β∈[β,β̄],m∈[0,m̄]} Ĩ

2. tu
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End of the proof of Theorem 6.
In conclusion, the maximum over A is attained, either on B or C, and a Stackelberg
equilibrium exists. Moreover if α > 0, the characterization given in the statement
of the theorem follows from Lemma 12. The last assertion follows from the end of
the proof of Proposition 4. tu

Remark 7 (i) Notice that Ĩ2 is not in general concave w.r.t β or γ. Consider for
example bm(x) = x0.8/0.8 and g(x) = x0.5/0.5.
(ii) Assume that equation (27) admits a unique solution, namely β̂. Then, from
Lemma 12, any Stackelberg equilibrium (ê, m̂, â, α̂, β̂, γ̂) with α̂ > 0 satisfies :

ê = (ϕ′)−1
(

1

1−β̂

)
, m̂ =

[
(bm)′

]−1
(1), γ̂ = 1/g′(m̂),

â ∈ arg maxa≥0 F (a)−e−uδψ(a)B̃(β̂, m̂), α̂ = C(β̂)−(1− β̂)δψ(â)+ ê+m̂− γ̂g(m̂),
where C and B̃ are respectively defined by (12) and (14).
In particular, if δ ≥ 0, an adaptation of the end of the proof of Proposition 4
proves that â is unique.

7 Proofs of Comparison results

7.1 Comparison between both Nash equilibria

We summarize Nash equilibria in both situations : in Situation 1, the Nash equi-
libria is characterized by

β̂ =
v

u+ v
, ê = (ϕ′)−1(

u+ v

u
), â1 = (ψ′)−1

(
(u+ v)(1 + rJ)

δ+u

)
, m̂ ≥ 0,

γ̂ =
1

g′(m̂)
, α̂1 +

g(m̂)

g′(m̂)
+

u

u+ v
δψ(â1) = (1 + rJ)(D + â1) + m̂+ ê+ C(β̂)

which leads to the optimal value for firm I:

Î1(m̂) = ba(â1)−B(m̂)eu[(1+rJ)(D+â1)−δψ(â1)],

where we recall

B(m̂) = e−u(bm(m̂)−m̂+be(ê)−ê)e(u+v)C(β̂),

evC(β̂) = E
[
exp(

uv

u+ v
(µ − ϕ(ê)))

]
.

In Situation 2, the Nash equilibria are characterized by

β̂ =
v

u+ v
, â2 ∈ arg max

a≥0

(
ba(a)− f [(1 + rI)(D + a)]− e−uδψ(a)B(m̂)

)
,

ê = (ϕ′)−1(
u+ v

u
), α̂2+

g(m̂)

g′(m̂)
+

u

u+ v
δψ(â2) = m̂+ê+C(β̂), m̂ ≥ 0, γ̂ =

1

g′(m̂)
,

which leads to the optimal value for firm I:

Î2(m̂) = ba(â2)− f [(1 + rI)(D + â2)]−B(m̂)e−uδψ(â2).

The following proposition gives the monotonicity of the optimal initial effort â1

in Situation 1 (respectively â2 in Situation 2) as a function of the interest rate rJ
(respectively rI).
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Proposition 5 The application rJ 7→ â1(rJ) is non increasing.
At least in case δ > 0, the application rI 7→ â2(rI) is non increasing.

Proof The monotonicity property of the function rJ 7→ â1(rJ) is a trivial conse-
quence of the definition of â1, since by hypothesis the function ψ′ is non increasing.
In case δ < 0, â1(rJ) = 0.
The second assertion is a consequence of the characterization of â2(rI) as the
unique solution of the equation (see the end of the proof of Proposition 4)H(â2(rI), rI) =
0 where

H(a, rI) = (ba)′(a) + uδψ′(a)B(m̂)e−uδψ(a) − (1 + rI)f
′[(1 + rI)(D + a)]. (65)

Thus dâ2

drI
(rI) = −∂rIH∂aH

(â2(rI), rI). Notice that

∂rIH = −f ′[(1 + rI)(D + a)]− (1 + rI)(D + a)f ′′[(1 + rI)(D + a)] < 0

since f is convex non decreasing. Therefore the sign of dâ2

drI
is the one of ∂aH =

(ba)′′(a) +uδB(m̂)e−uδψ(a)[ψ′′(a)−uδ(ψ′(a))2]− (1 + rI)
2f ′′[(1 + rI)(D+a)] < 0

(66)
since ba and ψ are concave and f is convex. tu

We now prove a sufficient condition under which the best situation is the second
one (debt issuance), as stated in Theorem 3.

Proof of Theorem 3
The key of the proof is the remark that, since in Situation 2 a is a control of
firm I, the optimal value Î2(m̂) obtained by this firm in any Nash equilibrium
(α̂, β̂, γ̂, ê, m̂, â2(rI)) is larger than I2(α̂, β̂, γ̂, ê, m̂, â1(rJ)). Hence

Î1(m̂)− Î2(m̂) ≤ Î1(m̂)− I2(α̂, β̂, γ̂, ê, m̂, â1(rJ))

= f((1 + rI)(D + â1(rJ)))−B(m̂)e−uδψ(â1(rJ))(eu(1+rJ)(D+â1(rJ)) − 1).

Condition (20) is equivalent to non-positivity of the right-hand side. tu

In the case δ > 0, we now prove a sufficient condition under which the best situa-
tion is the first one (outsourcing), as stated in Theorem 4.

Proof of Theorem 4
Let m̂ be the same parameter in both situations. By a slight abuse of notations,
we introduce the function

I1 : a 7→ ba(a)−B(m̂)eu((1+rJ)(D+a)−δψ(a))

which is such that Î1(m̂) = I1(â1(rJ)). Let us check that (22) implies that
I1(â2(rJ)) < I1(â1(rJ)). Since δ > 0, the second condition in (22) implies that
â1(rJ) > â2(rI) by the definition of â1(rJ) and the monotonicity of ψ′. In terms of
the function H defined by (65), the first condition in (22) writes H(â1(rJ), rI) < 0.
Since H(â2(rI), rI) = 0 and the function a 7→ H(a, rI) is decreasing by (66), this
also implies that â1(rJ) > â2(rI).
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Since a 7→ eu((1+rJ)(D+a)−δψ(a)) is convex by composition of the convex func-
tion a 7→ u ((1 + rJ)(D + a)− δψ(a)) with the increasing and convex exponential
function, I1 is concave from the concavity of ba. Now (I1)′(â1(rJ)) =

ba
′
(

(ψ′)−1(
(u+ v)(1 + rJ)

δu
)

)
+B(m̂)eu((1+rJ)(D+a)−δψ(a))u(1 + rJ) > 0.

From the concavity of I1 and the inequality â1(rJ) > â2(rI), we deduce that
I1(â2(rJ)) < I1(â1(rJ)) = Î1(m̂). As a consequence,

Î1(m̂)− Î2(m̂) > I1(â2(rJ))− Î2(m̂)

= f((1 + rI)(D + â2(rI)))−B(m̂)e−uδψ(â2(rI))(eu(1+rJ)(D+â2(rI)) − 1).

Condition (21) is equivalent to the non-negativity of the right-hand side, which
concludes the proof. tu

8 Proofs of incomplete information results

In the incomplete information framework, the firms do not have a perfect knowl-
edge of the preferences of the other firm. More precisely, we still assume that the
firms’ utility functions are U(x) = −e−ux and V (x) = −e−vx respectively, but
firm I perceives v as a (0,+∞)-valued random variable V independent of µ with
a known distribution. The penalty that firm I gets if firm J does not accept the
contract is denoted by p ∈ R ∪ {+∞}.

8.1 Stackelberg equilibrium in incomplete information, firm I is leader

(cf. (30) and (31))

uiI := −p ∨ sup
ci
{Ii(ci)P

(
Ai(ci)

)
− p(1− P

(
Ai(ci)

)
)}, (67)

where ci is the control of firm I in Situation i : c1 = (α, β, γ) and c2 = (a, α, β, γ)
and Ai(ci) is the event “firm J accepts the contract”. Firm J accepts the contract
if and only if −J̃ i(V, ci) ≤ 1, therefore Ai(ci) = {J̃ i(V, ci) ≤ 1} where J̃1 and J̃2

are respectively defined in (32) and (33). The next lemma aims at expliciting this
acceptance set. The functions v 7→ −J̃ i(v, ci) are infinitely differentiable according
to Hypothesis (2) and convex since their second order derivative is non-negative.
Since −J̃ i(0, ci) = 1, one deduces that

Lemma 14 For c1 = (α, β, γ) ∈ R+ ×R×R+ (respectively for c2 = (a, α, β, γ) ∈
R+ × R+ × R × R+), v̄(ci) := sup{v ≥ 0 : −J̃ i(v, ci) ≤ 1} belongs to [0,+∞]. If
v̄(ci) ∈ [0,+∞), then {v ≥ 0 : −J̃ i(v, ci) ≤ 1} = [0, v̄(ci)] and −J̃ i(v̄(ci), ci) = 1.
If v̄(ci) = +∞, then {v ≥ 0 : −J̃ i(v, ci) ≤ 1} = [0,+∞).
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Recall the value function of the problem with complete information that firm J’s
risk aversion is equal to v:

ui(v) := sup
{ci:−J̃i(v,ci)≤1}

Ĩi(ci)

and wiI = −p ∨ supv>0{ui(v)P(V ≤ v)− p
(
1− P(V ≤ v)

)
} as defined in Theorem

7. We now are able to prove Theorem 7.

Proof of Theorem 7
We first prove that uiI ≥ wiI . We only need to do so when wiI > −p which implies
that

wiI = sup
v>0:ui(v)P(V≤v)−pP(V>v)>−p

(
ui(v)P(V ≤ v)− pP(V > v)

)
.

Let v > 0 be such that ui(v)P(V ≤ v)− pP(V > v) > −p and ĉi(v) be an optimal
control for ui(v), so that ui(v) = Ĩi(ĉi(v)). Since −J̃(v, ĉi(v)) ≤ 1, by Lemma 14
one has {V ≤ v} ⊂ Ai(ĉi(v)) and when p < +∞,

ui(v)P(V ≤ v)− pP(V > v) = (ui(v) + p)P(V ≤ v)− p
≤ (ui(v) + p)P

(
Ai(ĉi(v))

)
− p

= Ĩi(ĉi(v))P(Ai(ĉi(v))− p(1− P(Ai(ĉi(v)) ≤ uiI .

When p = +∞, the left-most side of the above inequalities is still not greater than
the right-most side as 1 = P(V ≤ v) = P(Ai(ĉi(v))).
Since v > 0 such that ui(v)P(V ≤ v) − pP(V > v) > −p is arbitrary, we get
uiI ≥ wiI .
Finally we prove that wiI ≥ uiI in case uiI > −p. Let ε ∈ (0,

uiI+p

2 ) and ci be an

ε-optimal control for uiI . Since

Ĩi(ci)P
(
Ai(ci)

)
− p(1− P

(
Ai(ci)

)
) ≥ uiI − ε >

uiI − p
2

≥ −p,

one has P
(
Ai(ci)

)
> 0. Since V > 0 and Ai(ci) = {V ≤ v̄(ci)} for v̄(ci) = sup{v ≥

0 : −J̃ i(v, ci) ≤ 1}, one deduces that v̄(ci) ∈ (0,∞) ∪ {∞}.
For any v ∈ (0,+∞) such that −J̃ i(v, ci) ≤ 1, one has ui(v) ≥ Ĩi(ci).
• If v̄(ci) ∈ (0,+∞) then, by Lemma 14, −J̃ i(v̄(ci), ci) = 1 so that

wiI ≥ ui(v̄(ci))P(V ≤ v̄(ci))− pP(V > v̄(ci)) ≥ Ĩi(ci)P(V ≤ v̄(ci))− pP(V > v̄(ci))

= Ĩi(ci)P(Ai(ci))− p(1− P(Ai(ci)) ≥ uiI − ε.

• If v̄(ci) = +∞, then P
(
Ai(ci)

)
= 1 and for all v > 0, wiI ≥ Ĩi(ci)P(V ≤

v)−pP(V > v) and the same conclusion as before holds by taking the limit v →∞
in this inequality under the assumption that either p < +∞ or P(V > v) = 0 for
v large enough. Since ε > 0 is arbitrarily small, we get wiI ≥ uiI , which ends the
proof. tu

To prove Theorem 8, we need the following properties of the value functions
of the problems with complete information that firm J’s risk aversion is v.
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Lemma 15 The function v 7→ ui(v) is non-increasing and continuous on R+.

Proof We do the proof for Situation 2. The same holds (with the control (α, β, γ)
instead of (a, α, β, γ)) for Situation 1. For v ≥ 0, let Av = {(a, α, β, γ) ∈ R+ ×
R+ × R × R+ : −J̃2(v, a, α, β, γ) ≤ 1}. By Lemma 14, one has Av ⊂ Av′ when
v′ ≤ v. Therefore v 7→ u2(v) is non-increasing.
• Let us check the right-continuity of u2 i.e. that lim infv′→v+ u2(v′) ≥ u2(v).
According to Proposition 6, there exists (a, α, β, γ) ∈ Av such that u2(v) =
Ĩ2(a, α, β, γ).
Either−J̃2(v, a, α, β, γ) < 1 and by continuity of v′ 7→ −J̃2(v′, a, α, β, γ), (a, α, β, γ)
∈ Av′ for v′ close enough to v so that the conclusion holds.
Or −J̃2(v, a, α, β, γ) = 1 so that for v′ > v, −J̃2(v′, a, α, β, γ) > 1, and
αv′ = α + 1

v′ ln(−J̃2(v′, a, α, β, γ)) > 0 is such that −J̃2(v′, a, αv′ , β, γ)) = 1 and

limv′→v+ Ĩ2(a, αv′ , β, γ) = Ĩ2(a, α, β, γ).
• For the left-continuity, we consider a sequence (vn)n of positive numbers increas-
ing to a finite limit v∞. According to Theorem 6, there exists (an, αn, βn, γn) ∈
Avn such that u2(vn) = Ĩ2(an, αn, βn, γn). By Lemma 11 and the proof of Lemma
13, (an, αn, βn, γn) stays in a compact subset of R+ × R+ × R × R+ so one
may extract a subsequence that we still index by n for simplicity such that
(an, αn, βn, γn) tends to (a∞, α∞, β∞, γ∞). By continuity of Ĩ2 and J̃2, one has
J̃2(v∞, a∞, α∞, β∞, γ∞) = limn→∞ J̃2(vn, an, αn, βn, γn) so that (a∞, α∞, β∞, γ∞) ∈
Av∞ and therefore limn→∞ Ĩ2(an, αn, βn, γn) = Ĩ2(a∞, α∞, β∞, γ∞) ≤ u2(v∞).
With the monotonicity of u2, we conclude that this function is continuous. tu

We prove the existence of a Stackelberg equilibrium with incomplete information,
firm I leader.
Proof of Theorem 8 Let v0 := inf{v > 0 : P(V ≤ v) > 0}.

If limv→v+
0
ui(v) ≤ −p, , then viI = wiI = −p.

If not, limv→v+
0
ui(v) > −p and we assume that

v1 := sup{v > 0 : P(V > v) > 0} < +∞.

If p = +∞, then the optimization problem (34) clearly admits the solution
v? = v1.

If p < +∞, then there exists v > v0 close enough to v0 such that

(ui(v) + p)P(V ≤ v) > 0.

Let us deduce existence of a solution to the optimization problem (34).
Since u1 (resp. u2) is bounded from above by supa∈R+

ba(a) < +∞ (resp.
supa∈R+

F (a) < +∞) and V takes its values in (0,+∞), one has

lim
v→0

(ui(v) + p)P(V ≤ v) = 0.

The function v 7→ (ui(v) + p)P(V ≤ v) being upper-semicontinuous on the
closed set {v ∈ [ε, v1] : ui(v) + p ≥ 0} for each ε > 0, we conclude that
the optimization problem (34) has a solution v? ∈ (0, v1] if v0 = 0 and in
[v0, v1] otherwise.
Moreover ui(v?) > −p. Let ĉi(v?) be an optimal control for ui(v?) such
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that ui(v?) = Ĩi(ĉi(v?)). Since −J̃ i(v?, ĉi(v?)) ≤ 1, by Lemma 14 one has
{V ≤ v?} ⊂ Ai(ĉi(v?)) and

wiI = ui(v?)P(V ≤ v?)− pP(V > v?) = (ui(v?) + p)P(V ≤ v?)− p

≤ (ui(v?) + p)P
(
Ai(ĉi(v?))

)
− p

= Ĩi(ĉi(v?))P(Ai(ĉi(v?)))− p(1− P(Ai(ĉi(v?)))
≤ uiI .

With Theorem 7, we conclude that (ĉi(v?)) solves problem (30)-(31).

tu

8.2 Nash equilibrium in incomplete information

We consider both situations, the proofs are quite similar. Let I(a, α, β, γ, e,m) :=

E
[
ba(a)− e−u

(
bm(m)+be(e)−α−β(µ −ϕ(e)−δψ(a))−γg(m)

)]
respectively I(a, α, β, γ, e,m) :=

E
[
F (a)− e−u

(
bm(m)+be(e)−α−β(µ −ϕ(e)−δψ(a))−γg(m)

)]
,

and J(v, a, α, β, γ, e,m) :=

−E
[
e−v

(
α+(β−1)(µ −ϕ(e)−δψ(a))−e+γg(m)−m−(1+rJ)(D+a)

)]
respectively

J(v, a, α, β, γ, e,m) := −E
[
e−v

(
α+(β−1)(µ −ϕ(e)−δψ(a))−e+γg(m)−m

)]
.

For firm I, given the controls (a, e,m) of firm J (respectively (e,m)), the problem
is to find (α, β, γ) (respectively (a, α, β, γ) ) maximizing

I(a, α, β, γ, e,m)P(J(V, a, α, β, γ, e,m) ≥ −1)− pP(J(V, a, α, β, γ, e,m) < −1).

As in Lemma 14, we have

Lemma 16 For c = (a, α, β, γ, e,m) ∈ R+ × R+ × R × R+ × R+ × R+, v̄(c) :=
sup{v ≥ 0 : J(v, c) ≥ −1} belongs to [0,+∞]. If v̄(c) ∈ [0,+∞), then {v ≥ 0 :
J(v, c) ≥ −1} = [0, v̄(c)] and J(v̄(c), c) = −1. If v̄(c) = +∞, then {v ≥ 0 :
J(v, c) ≥ −1} = [0,+∞).
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Proof of Theorem 9 Assume the existence of a Nash equilibrium ĉ = (â, α̂, β̂, γ̂, ê, m̂)
such that the value for firm I is greater than −p. This implies that I(ĉ) > −p and
0 < P(−J(V, ĉ) ≤ 1).
Since by Lemma 16, P(−J(V, ĉ) ≤ 1) = P(V ≤ v̄(ĉ)), one has v̄(ĉ) > 0.
We detail below the proof in Situation 1. The one in Situation 2 follows the same
scheme, replacing the sets of control parameters (α, β, γ) and (a, e,m) respectively
by (a, α, β, γ) and (e,m).
• Assume that v̄(ĉ) < +∞ and let v ∈ (0, v̄(ĉ)] be such that P(V ∈ (v, v̄(ĉ)]) = 0.
For (α, β, γ) such that −J(v, â, α, β, γ, ê, m̂) ≤ 1:

either I(â, α, β, γ, ê, m̂) ≤ −p and therefore I(â, α, β, γ, ê, m̂) < I(ĉ),
or I(â, α, β, γ, ê, m̂) > −p and since

P(−J(V, â, α, β, γ, ê, m̂) ≤ 1) ≥ P(V ≤ v) = P(V ≤ v̄(ĉ)) = P(−J(V, ĉ) ≤ 1), then:

I(â, α, β, γ, ê, m̂)P(V ≤ v̄(ĉ))− pP(V > v̄(ĉ))

≤ I(â, α, β, γ, ê, m̂)P(−J(V, â, α, β, γ, ê, m̂) ≤ 1)− pP(−J(V, â, α, β, γ, ê, m̂) > 1)

≤ I(ĉ)P(−J(V, ĉ) ≤ 1)− pP(−J(V, ĉ) > 1) = I(ĉ)P(V ≤ v̄(ĉ))− pP(V > v̄(ĉ)),

where the last inequality follows from the fact that ĉ is a Nash equilibrium for the
problem with incomplete information (cf. (67)).
This implies that I(â, α, β, γ, ê, m̂) ≤ I(ĉ). Since by Lemma 16, J(v, ĉ) ≥ −1, we
deduce that ĉ is a Nash equilibrium for the problem with complete information
and risk aversion v for firm J . By Theorem 2, we deduce that β̂ = v

u+v so that
the only v ∈ (0, v̄(ĉ)] such that P(V ∈ (v, v̄(ĉ)]) = 0 is v̄(ĉ) = v̂.
• The same line of reasoning permits to conclude that in case v̄(ĉ) = +∞, ∀v ∈
(0,+∞), P(V ∈ (v,+∞)) > 0. tu
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