10 research outputs found

    Electron traps in solid Xe

    No full text
    Correlated real-time measurements of thermally stimulated luminescence and exoelectron emission from solid Xe pre-irradiated with an electron beam were performed. The study enabled us to distinguish between surface and bulk traps in solid Xe and to identify a peak related to electronically induced defects. The activation energy corresponding to annihilation of these defects was estimated by the following methods: the method of different heating rates, the initial-rise method, and the curve cleaning technique with fitting of the thermally stimulated luminescence glow curve

    Softened magnetic excitations in the s = 3/2 distorted triangular antiferromagnet alpha-CaCr2O4

    Full text link
    The spin dynamics and magnetic excitations of the slightly distorted triangular s = 3/2 system alpha-CaCr2O4 are investigated by means of Raman spectroscopy and electron spin resonance (ESR) to elucidate its peculiar magnetic properties. Two-magnon excitations in circular RL symmetry show a multi-maximum structure with a dominant spectral weight at low energies. The temperature dependence of the ESR linewidth is described by a critical broadening DeltaHpp(T) ~ (T - T_N)^{-p} with the exponent p = 0.30(3) - 0.38(5) for temperatures above T_N = 42.6 K. The exponent is much smaller than that of other s = 3/2 triangular lattices. This is ascribed to soft roton-like modes, indicative of the instability of a helical 120{\deg} phase. As an origin we discuss a complex spin topology formed by four inequivalent nearest neighbor and sizable next-nearest neighbor interactions.Comment: 7 pages, 4 figure

    Interaction between magnetic moments and itinerant carriers in d0 ferromagnetic SiC

    Full text link
    Elucidating the interaction between magnetic moments and itinerant carriers is an important step to spintronic applications. Here, we investigate magnetic and transport properties in d0 ferromagnetic SiC single crystals prepared by postimplantation pulsed laser annealing. Magnetic moments are contributed by the p states of carbon atoms, but their magnetic circular dichroism is different from that in semi-insulating SiC samples. The anomalous Hall effect and negative magnetoresistance indicate the influence of d0 spin order on free carriers. The ferromagnetism is relatively weak in N-implanted SiC compared with that in Al-implanted SiC after annealing. The results suggest that d0 magnetic moments and itinerant carriers can interact with each other, which will facilitate the development of SiC spintronic devices with d0 ferromagnetism.Comment: 20 pages, 5 figure

    Terahertz signatures of ultrafast Dirac fermion relaxation at the surface of topological insulators

    Get PDF
    Topologically protected surface states present rich physics and promising spintronic, optoelectronic, and photonic applications that require a proper understanding of their ultrafast carrier dynamics. Here, we investigate these dynamics in topological insulators (TIs) of the bismuth and antimony chalcogenide family, where we isolate the response of Dirac fermions at the surface from the response of bulk carriers by combining photoexcitation with below-bandgap terahertz (THz) photons and TI samples with varying Fermi level, including one sample with the Fermi level located within the bandgap. We identify distinctly faster relaxation of charge carriers in the topologically protected Dirac surface states (few hundred femtoseconds), compared to bulk carriers (few picoseconds). In agreement with such fast cooling dynamics, we observe THz harmonic generation without any saturation effects for increasing incident fields, unlike graphene which exhibits strong saturation. This opens up promising avenues for increased THz nonlinear conversion efficiencies, and high-bandwidth optoelectronic and spintronic information and communication applications.Parts of this research were carried out at ELBE at the Helmholtz-Zentrum Dresden-Rossendorf e.V., a member of the Helmholtz Association. The films are grown in IRE RAS within the framework of the state task. This work was supported by the RFBR grants Nos. 18-29-20101, 19-02-00598. N.A., S.K., and I.I. acknowledge support from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 737038 (TRANSPIRE). T.V.A.G.O. and L.M.E. acknowledge the support by the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter (ct.qmat). K.-J.T. acknowledges funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 804349 (ERC StG CUHL) and financial support through the MAINZ Visiting Professorship. ICN2 was supported by the Severo Ochoa program from Spanish MINECO Grant No. SEV-2017-0706

    Ultrafast Tunable Terahertz-to-Visible Light Conversion through Thermal Radiation from Graphene Metamaterials [Dataset]

    Get PDF
    6 pages. -- Supplementary Note 1, Sample Preparation. -- Supplementary Note 2, Experimental. -- Supplementary Note 3, Calculations of electron temperature. -- Supplementary Note 4, THz fluence and intensity. -- Supplementary Figures. -- Supplementary References.Several technologies, including photodetection, imaging, and data communication, could greatly benefit from the availability of fast and controllable conversion of terahertz (THz) light to visible light. Here, we demonstrate that the exceptional properties and dynamics of electronic heat in graphene allow for a THz-to-visible conversion, which is switchable at a sub-nanosecond time scale. We show a tunable on/off ratio of more than 30 for the emitted visible light, achieved through electrical gating using a gate voltage on the order of 1 V. We also demonstrate that a grating-graphene metamaterial leads to an increase in THz-induced emitted power in the visible range by 2 orders of magnitude. The experimental results are in agreement with a thermodynamic model that describes blackbody radiation from the electron system heated through intraband Drude absorption of THz light. These results provide a promising route toward novel functionalities of optoelectronic technologies in the THz regime.Peer reviewe

    Grating-graphene metamaterial as a platform for terahertz nonlinear photonics

    Get PDF
    Nonlinear optics is an increasingly important field for scientific and technological applications, owing to its relevance and potential for optical and optoelectronic technologies. Currently, there is an active search for suitable nonlinear material systems with efficient conversion and small material footprint. Ideally, the material system should allow for chip-integration and room-temperature operation. Two-dimensional materials are highly interesting in this regard. Particularly promising is graphene, which has demonstrated an exceptionally large nonlinearity in the terahertz regime. Yet, the light-matter interaction length in two-dimensional materials is inherently minimal, thus limiting the overall nonlinear-optical conversion efficiency. Here we overcome this challenge using a metamaterial platform that combines graphene with a photonic grating structure providing field enhancement. We measure terahertz third-harmonic generation in this metamaterial and obtain an effective third-order nonlinear susceptibility with a magnitude as large as 3\cdot108^{-8}m2^2/V2^2, or 21 esu, for a fundamental frequency of 0.7 THz. This nonlinearity is 50 times larger than what we obtain for graphene without grating. Such an enhancement corresponds to third-harmonic signal with an intensity that is three orders of magnitude larger due to the grating. Moreover, we demonstrate a field conversion efficiency for the third harmonic of up to \sim1% using a moderate field strength of \sim30 kV/cm. Finally we show that harmonics beyond the third are enhanced even more strongly, allowing us to observe signatures of up to the 9th^{\rm th} harmonic. Grating-graphene metamaterials thus constitute an outstanding platform for commercially viable, CMOS compatible, room temperature, chip-integrated, THz nonlinear conversion applications

    Fano interference of the Higgs mode in cuprate high-Tc superconductors

    Full text link
    Despite decades of search for the pairing boson in cuprate high-Tc superconductors, its identity still remains debated to date. For this reason, spectroscopic signatures of electron-boson interactions in cuprates have always been a center of attention. For example, the kinks in the quasiparticle dispersion observed by angle-resolved photoemission spectroscopy (ARPES) studies have motivated a decade-long investigation of electron-phonon as well as electron-paramagnon interactions in cuprates. On the other hand, the overlap between the charge-order correlations and the pseudogap in the cuprate phase diagram has also generated discussions about the potential link between them. In the present study, we provide a fresh perspective on these intertwined interactions using the novel approach of Higgs spectroscopy, i.e. an investigation of the amplitude oscillations of the superconducting order parameter driven by a terahertz radiation. Uniquely for cuprates, we observe a Fano interference of its dynamically driven Higgs mode with another collective mode, which we reveal to be charge density wave fluctuations from an extensive doping- and magnetic field-dependent study. This finding is further corroborated by a mean field model in which we describe the microscopic mechanism underlying the interaction between the two orders. Our work demonstrates Higgs spectroscopy as a novel and powerful technique for investigating intertwined orders and microscopic processes in unconventional superconductors
    corecore