18 research outputs found

    Protein interactions with piALU RNA indicates putative participation of retroRNA in the cell cycle, DNA repair and chromatin assembly

    Get PDF
    Recent analyses suggest that transposable element-derived transcripts are processed to yield a variety of small RNA species that play critical functional roles in gene regulation and chromatin organization as well as genome stability and maintenance. Here we report a mass spectrometry analysis of an RNA-affinity complex isolation using a piRNA homologous sequence derived from Alu retrotransposal RNA. Our data point to potential roles for piALU RNAs in DNA repair, cell cycle and chromatin regulations

    Structural determinants of the SINE B2 element embedded in the long non-coding RNA activator of translation AS Uchl1

    Get PDF
    Pervasive transcription of mammalian genomes leads to a previously underestimated level of complexity in gene regulatory networks. Recently, we have identified a new functional class of natural and synthetic antisense long non-coding RNAs (lncRNA) that increases translation of partially overlapping sense mRNAs. These molecules were named SINEUPs, as they require an embedded inverted SINE B2 element for their UP-regulation of translation. Mouse AS Uchl1 is the representative member of natural SINEUPs. It was originally discovered for its role in increasing translation of Uchl1 mRNA, a gene associated with neurodegenerative diseases. Here we present the secondary structure of the SINE B2 Transposable Element (TE) embedded in AS Uchl1. We find that specific structural regions, containing a short hairpin, are required for the ability of AS Uchl1 RNA to increase translation of its target mRNA. We also provide a high-resolution structure of the relevant hairpin, based on NMR observables. Our results highlight the importance of structural determinants in embedded TEs for their activity as functional domains in lncRNAs

    DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration.

    No full text
    Geographic atrophy (GA), an untreatable advanced form of age-related macular degeneration, results from retinal pigmented epithelium (RPE) cell degeneration. Here we show that the microRNA (miRNA)-processing enzyme DICER1 is reduced in the RPE of humans with GA, and that conditional ablation of Dicer1, but not seven other miRNA-processing enzymes, induces RPE degeneration in mice. DICER1 knockdown induces accumulation of Alu RNA in human RPE cells and Alu-like B1 and B2 RNAs in mouse RPE. Alu RNA is increased in the RPE of humans with GA, and this pathogenic RNA induces human RPE cytotoxicity and RPE degeneration in mice. Antisense oligonucleotides targeting Alu/B1/B2 RNAs prevent DICER1 depletion-induced RPE degeneration despite global miRNA downregulation. DICER1 degrades Alu RNA, and this digested Alu RNA cannot induce RPE degeneration in mice. These findings reveal a miRNA-independent cell survival function for DICER1 involving retrotransposon transcript degradation, show that Alu RNA can directly cause human pathology, and identify new targets for a major cause of blindness

    RUDI, a short interspersed element of the V-SINE superfamily widespread in molluscan genomes

    No full text
    Short interspersed elements (SINEs) are non-autonomous retrotransposons that are widespread in eukaryotic genomes. They exhibit a chimeric sequence structure consisting of a small RNA-related head, an anonymous body and an AT-rich tail. Although their turnover and de novo emergence is rapid, some SINE elements found in distantly related species retain similarity in certain core segments (or highly conserved domains, HCD). We have characterized a new SINE element named RUDI in the bivalve molluscs Ruditapes decussatus and R. philippinarum and found this element to be widely distributed in the genomes of a number of mollusc species. An unexpected structural feature of RUDI is the HCD domain type V, which was first found in non-amniote vertebrate SINEs and in the SINE from one cnidarian species. In addition to the V domain, the overall sequence conservation pattern of RUDI elements resembles that found in ancient AmnSINE (~310 Myr old) and Au SINE (~320 Myr old) families, suggesting that RUDI might be among the most ancient SINE families. Sequence conservation suggests a monophyletic origin of RUDI. Nucleotide variability and phylogenetic analyses suggest long-term vertical inheritance combined with at least one horizontal transfer event as the most parsimonious explanation for the observed taxonomic distribution
    corecore