75 research outputs found

    Effect of Rainfall for the Dynamical Transmission Model of the Dengue Disease in Thailand

    Get PDF
    The SEIR (Susceptible-Exposed-Infected-Recovered) model is used to describe the transmission of dengue virus. The main contribution is determining the role of the rainfall in Thailand in the model. The transmission of dengue disease is assumed to depend on the nature of the rainfall in Thailand. We analyze the dynamic transmission of dengue disease. The stability of the solution of the model is analyzed. It is investigated by using the Routh-Hurwitz criteria. We find two equilibrium states: a disease-free state and an endemic equilibrium state. The basic reproductive number (R0) is obtained, which indicates the stability of each equilibrium state. Numerical results taking into account the rainfall are obtained and they are seen to correspond to the analytical results

    Does Bangkok have a central role in the dengue dynamics of Thailand?

    Get PDF
    BACKGROUND: Bangkok plays a central role in the commerce of Thailand. This study aimed to characterize the district-level spatial-temporal patterns of dengue in Thailand and explore if a dengue peak in Bangkok led the peaks of dengue in other Thai provinces. METHODS: Monthly dengue data at district level in Thailand from January 2004 to December 2017 were obtained and used to assess the spatial and seasonal patterns of dengue in Thailand. As our seasonal decomposition and cross-correlation analyses showed that dengue in Bangkok peaked in November, which was a few months after the dengue peak in most other provinces, we used a time-series generalized linear model to explore if there was another province in which the dengue case number was most predictive of dengue case numbers in other Thai provinces. RESULTS: The highest district-level annual dengue incidence rates (per 10,000) in the three time periods (i.e. 2004-2008, 2009-2013 and 2014-2017) were 58.08 (Samphanthawong), 85.93 (Mueang Krabi), and 66.60 (Mae Sariang), respectively. Dengue incidence rates in the western part of Northern Thailand, southern part of Central Thailand, southern part of Eastern Thailand, and Southern Thailand were higher than in other regions. Dengue in most districts of Thailand peaked in June, July or August, but dengue peaks in all districts of Bangkok occurred in November. The number of dengue cases in Nakhon Ratchasima was most predictive of the number of dengue cases in other provinces in Thailand by a one-month lag. CONCLUSIONS: Our results suggest that the dengue peak in Bangkok did not lead the peaks of dengue in other Thai provinces. Future research exploring how changes in socio-ecological factors (e.g. road network and climate factors) in Nakhon Ratchasima have affected the transmission of dengue in Thailand might shed some new light on the prevention and control of dengue

    Social sciences research in neglected tropical diseases 2: A bibliographic analysis

    Get PDF
    The official published version of the article can be found at the link below.Background There are strong arguments for social science and interdisciplinary research in the neglected tropical diseases. These diseases represent a rich and dynamic interplay between vector, host, and pathogen which occurs within social, physical and biological contexts. The overwhelming sense, however, is that neglected tropical diseases research is a biomedical endeavour largely excluding the social sciences. The purpose of this review is to provide a baseline for discussing the quantum and nature of the science that is being conducted, and the extent to which the social sciences are a part of that. Methods A bibliographic analysis was conducted of neglected tropical diseases related research papers published over the past 10 years in biomedical and social sciences. The analysis had textual and bibliometric facets, and focussed on chikungunya, dengue, visceral leishmaniasis, and onchocerciasis. Results There is substantial variation in the number of publications associated with each disease. The proportion of the research that is social science based appears remarkably consistent (<4%). A textual analysis, however, reveals a degree of misclassification by the abstracting service where a surprising proportion of the "social sciences" research was pure clinical research. Much of the social sciences research also tends to be "hand maiden" research focused on the implementation of biomedical solutions. Conclusion There is little evidence that scientists pay any attention to the complex social, cultural, biological, and environmental dynamic involved in human pathogenesis. There is little investigator driven social science and a poor presence of interdisciplinary science. The research needs more sophisticated funders and priority setters who are not beguiled by uncritical biomedical promises

    The Role of Human Movement in the Transmission of Vector-Borne Pathogens

    Get PDF
    Vector-borne diseases constitute a largely neglected and enormous burden on public health in many resource-challenged environments, demanding efficient control strategies that could be developed through improved understanding of pathogen transmission. Human movement—which determines exposure to vectors—is a key behavioral component of vector-borne disease epidemiology that is poorly understood. We develop a conceptual framework to organize past studies by the scale of movement and then examine movements at fine-scale—i.e., people going through their regular, daily routine—that determine exposure to insect vectors for their role in the dynamics of pathogen transmission. We develop a model to quantify risk of vector contact across locations people visit, with emphasis on mosquito-borne dengue virus in the Amazonian city of Iquitos, Peru. An example scenario illustrates how movement generates variation in exposure risk across individuals, how transmission rates within sites can be increased, and that risk within sites is not solely determined by vector density, as is commonly assumed. Our analysis illustrates the importance of human movement for pathogen transmission, yet little is known—especially for populations most at risk to vector-borne diseases (e.g., dengue, leishmaniasis, etc.). We outline several important considerations for designing epidemiological studies to encourage investigation of individual human movement, based on experience studying dengue

    Modeling the Dynamic Transmission of Dengue Fever: Investigating Disease Persistence

    Get PDF
    Dengue is the most rapidly spreading mosquito-borne viral disease in the world and approximately 2.5 billion people live in dengue endemic countries. In Brazil it is mainly transmitted by Aedes aegypti mosquitoes. The wide clinical spectrum ranges from asymptomatic infections or mild illness, to the more severe forms of infection such as dengue hemorrhagic fever or dengue shock syndrome. The spread and dramatic increase in the occurrence of dengue cases in tropical and subtropical countries has been blamed on uncontrolled urbanization, population growth and international traveling. Vaccines are under development and the only current disease control strategy is trying to keep the vector quantity at the lowest possible levels. Mathematical models have been developed to help understand the disease's epidemiology. These models aim not only to predict epidemics but also to expand the capacity of phenomena explanation. We developed a spatially explicit model to simulate the dengue transmission in a densely populated area. The model involves the dynamic interactions between humans and mosquitoes and takes into account human mobility as an important factor of disease spread. We investigated the importance of human population size, human renewal rate, household infestation and ratio of vectors per person in the maintenance of sustained viral circulation

    2015年にミャンマー国で発生したデング熱流行の臨床、ウイルス学、疫学解析

    Get PDF
    Hospital-based surveillance was conducted at two widely separated regions in Myanmar during the 2015 dengue epidemic. Acute phase serum samples were collected from 332 clinically diagnosed dengue patients during the peak season of dengue cases. Viremia levels were measured by quantitative real-time PCR and plaque assays using FcγRIIA-expressing and non-FcγRIIA-expressing BHK cells to specifically determine the infectious virus particles. By serology and molecular techniques, 280/332 (84・3%) were confirmed as dengue patients. All four serotypes of dengue virus (DENV) were isolated from among 104 laboratory-confirmed patients including two cases infected with two DENV serotypes. High percentage of primary infection was noted among the severe dengue patients. Patients with primary infection or DENV IgM negative demonstrated significantly higher viral loads but there was no significant difference among the severity groups. Viremia levels among dengue patients were notably high for a long period which was assumed to support the spread of the virus by the mosquito vector during epidemic. Phylogenetic analyses of the envelope gene of the epidemic strains revealed close similarity with the strains previously isolated in Myanmar and neighboring countries. DENV-1 dominated the epidemic in 2015 and the serotype (except DENV-3) and genotype distributions were similar in both study sites.長崎大学学位論文 学位記番号:博(医歯薬)甲第984号 学位授与年月日:平成29年9月20日Author: A. K. KYAW, M. M. NGWE TUN, M. L. MOI, T. NABESHIMA, K. T. SOE, S. M. THWE, A. A. MYINT, K. T. T. MAUNG, W. AUNG, D. HAYASAKA, C. C. BUERANO, K. Z. THANT and K. MORITACitation: Epidemiology & Infection, 145(9), pp.1886-1897; 2017Nagasaki University (長崎大学)課程博

    Economic Burden of Dengue Virus Infection at the Household Level Among Residents of Puerto Maldonado, Peru.

    Get PDF
    Dengue virus (DENV) was reintroduced to Peru in the 1990s and has been reported in Puerto Maldonado (population ~65,000) in the Peruvian southern Amazon basin since 2000. This region also has the highest human migration rate in the country, mainly from areas not endemic for DENV. The objective of this study was to assess the proportion of household income that is diverted to costs incurred because of dengue illness and to compare these expenses between recent migrants (RMs) and long-term residents (LTRs). We administered a standardized questionnaire to persons diagnosed with dengue illness at Hospital Santa Rosa in Puerto Maldonado from December 2012 to March 2013. We compared direct and indirect medical costs between RMs and LTRs. A total of 80 participants completed the survey, of whom 28 (35%) were RMs and 52 (65%) were LTRs. Each dengue illness episode cost the household an average of US105(standarddeviation[SD]=107),representing24105 (standard deviation [SD] = 107), representing 24% of their monthly income. Indirect costs were the greatest expense (US56, SD = 87), especially lost wages. The proportion of household income diverted to dengue illness did not differ significantly between RM and LTR households. The study highlights the significant financial burden incurred by households when a family member suffers dengue illness

    The Simulation Model of Dengue Transmission by Gender of Human in Thailand

    No full text
    Dengue disease can be transmitted to human by the biting of infected Aedes aegypti mosquitoes. This disease has 4 serotypes such as DEN-1, DEN-2, DEN-3 and DEN-4. The symptoms of this disease are high fever, headache, body aches, nausea and rash. This paper describes the spread of this disease by formulating the dynamical model between human and mosquito populations. The human are separating into man and woman populations. The standard dynamical modelling method is used to analyze our dynamical model. The numerical solutions are presented. The basic reproduction value of the disease is found. The way for reducing the transmission of this disease is introduced
    corecore