486 research outputs found

    Compton Scattering In Electron Energy Loss Spectrometry

    Get PDF
    It is well known that the distribution of electron momenta (electron density in momentum representation) of gases can be probed by Compton scattering of either photons (γ-rays or X-rays) or electrons. Recently it has been shown that Compton scattering of electrons is suited to the study of the electron momentum densities of solids on a microscopic scale. This technique, known as ECOSS, Electron Compton Scattering from Solids can be done in the electron microscope by electron energy loss spectrometry (EELS). After a discussion of inherent approximations and the introduction of the reciprocal form factor a method is proposed in order to cope with the main difficulty, namely multiple scattering. Important applications of ECOSS are the study of anisotropy of momentum densities; correlation effects of conduction electrons in metals; and charge transfer in alloys

    Noninvasive ¹³C-octanoic acid breath test shows delayed gastric emptying in patients with amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive loss of motor neurons. However, ALS has been recognized to also involve non-motor systems. Subclinical involvement of the autonomic system in ALS has been described. The recently developed C-13-octanoic acid breath test allows the noninvasive measurement of gastric emptying. With this new technique we investigated 18 patients with ALS and 14 healthy volunteers. None of the patients had diabetes mellitus or other disorders known to cause autonomic dysfunction. The participants received a solid standard test meal labeled with C-13-octanoic acid. Breath samples were taken at 15-min intervals for 5 h and were analyzed for (CO2)-C-13 by isotope selective nondispersive infrared spectrometry. Gastric emptying peak time (t(peak)) and emptying half time (t(1/2)) were determined. All healthy volunteers displayed normal gastric emptying with a mean emptying t(1/2) of 138 +/- 34 (range 68-172) min. Gastric emptying was delayed (t(1/2) > 160 min) in 15 of 18 patients with ALS. Emptying t(1/2) in ALS patients was 218 +/- 48 (range 126-278) min (p < 0.001). These results are compatible with autonomic involvement in patients with ALS, causing delayed gastric emptying of solids and encouraging the theory that ALS is a multisystem disease rather than a disease of the motor neurons only

    Reforestation in a high-CO2 world - Higher mitigation potential than expected, lower adaptation potential than hoped for

    No full text
    We assess the potential and possible consequences for the global climate of a strong reforestation scenario for this century. We perform model experiments using the Max Planck Institute Earth System Model (MPI-ESM), forced by fossil-fuel CO2 emissions according to the high-emission scenario Representative Concentration Pathway (RCP) 8.5, but using land use transitions according to RCP4.5, which assumes strong reforestation. Thereby, we isolate the land use change effects of the RCPs from those of other anthropogenic forcings. We find that by 2100 atmospheric CO2 is reduced by 85 ppm in the reforestation model experiment compared to the reference RCP8.5 model experiment. This reduction is higher than previous estimates and is due to increased forest cover in combination with climate and CO2 feedbacks. We find that reforestation leads to global annual mean temperatures being lower by 0.27 K in 2100. We find large annual mean warming reductions in sparsely populated areas, whereas reductions in temperature extremes are also large in densely populated areas

    The sympathetic nervous system stimulates anti-inflammatory B cells in collagen-type II-induced arthritis

    Get PDF
    Background: As previously shown, the sympathetic nervous system (SNS) shows proinflammatory activity during initiation of arthritis but is anti-inflammatory in established collagen-induced arthritis (CIA). Interleukin 10 (IL-10)-producing B cells suppress arthritis and are a potential target of the SNS because (1) B cells express functional β2-adrenoceptors (β2ARs) and (2) IL-10, at least in monocytes/macrophages, is regulated in a cAMP/PKA/CREB-dependent manner. Objective: To test the hypothesis that anti-inflammatory effects of the SNS in CIA are mediated by stimulating IL-10-producing anti-inflammatory B cells. Methods: Collagen-induced arthritis in DBA/1 mice, sympathectomy, adoptive B cell transfer, in vitro B cell culture, and assessment of B cell IL-10 production. Results and conclusion: Mice treated with B cells from SNS-intact mice showed less severe arthritis than mice treated with B cells from sympathectomised mice. This anti-inflammatory action of B cells from SNS-intact mice correlated with increased IL-10 produced by B cells, which was mediated by norepinephrine (NE), in a β2AR, PKA-dependent manner. However, an NE-mediated increase in IL-10 was seen only in B cells from immunised but not naive mice, explaining in part the anti-inflammatory properties of the SNS in the late phase of arthritis. Finally, animals treated with B cells isolated from immunised mice and activated in vitro in the presence of a β2AR stimulus showed a decrease in arthritis severity in comparison with controls, an approach that might be used for future cellular treatment strategies

    Towards net zero CO2 in 2050: an emission reduction pathway for organic soils in Germany

    Get PDF
    The Paris Agreement reflects the global endeavour to limit the increase of global average temperature to 2 °C, better 1.5 °C above pre-industrial levels to prevent dangerous climate change. This requires that global anthropogenic net carbon dioxide (CO2) emissions are reduced to zero around 2050. The German Climate Protection Plan substantiates this goal and explicitly mentions peatlands, which make up 5 % of the total area under land use and emit 5.7 % of total annual greenhouse gas emissions in Germany. Based on inventory reporting and assumptions of land use change probability, we have developed emission reduction pathways for organic soils in Germany that on a national level comply with the IPCC 1.5 °C pathways. The more gradual pathway 1 requires the following interim (2030, 2040) and ultimate (2050) milestones: Cropland use stopped and all Cropland converted to Grassland by 2030; Water tables raised to the soil surface on 15 % / 60 % / 100 % of all Grassland, on 50 % / 75 % / 100 % of all Forest land, and ultimately on 2/3 of all Settlements and on 100 % of all Wetlands. Also a more direct pathway 2 without interim ‘moist’ water tables and the climate effect (radiative forcing) of different scenarios is presente

    Comparing the influence of net and gross anthropogenic land-use and land-cover changes on the carbon cycle in the MPI-ESM

    Get PDF
    Global vegetation models traditionally treat anthropogenic land-use and land-cover changes (LULCCs) only as the changes in vegetation cover seen from one year to the next (net transitions). This approach ignores subgrid-scale processes such as shifting cultivation which do not affect the net vegetation distribution but which have an impact on the carbon budget. The differences in the carbon stocks feed back on processes like wildfires and desert formation. The simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) all describe LULCCs using the "Land-Use Harmonization Dataset''. Though this dataset describes such subgrid-scale processes (gross transitions), some of the CMIP5 models still use the traditional approach. Using JSBACH/CBALANCE - the land carbon component of the Max Planck Institute Earth System Model (MPI-ESM), this study demonstrates how this potentially leads to a severe underestimation of the carbon emissions from LULCCs. Using net transitions lowers the average land-use emissions from 1.44 to 0.90 Pg C yr(-1) (38 %) during the historical period (1850-2005) - a total lowering by 85 Pg C. The difference between the methods is smaller in the RCP scenarios (2006-2100) but in RCP2.6 and RCP8.5 still cumulates to 30-40 PgC (on average 0.3-0.4 Pg Cyr(-1) or 13-25 %). In RCP4.5 essentially no difference between the methods is found. Results from models using net transitions are furthermore found to be sensitive to model resolution

    Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity

    Get PDF
    In summer 2018, central and northern Europe were stricken by extreme drought and heat (DH2018). The DH2018 differed from previous events in being preceded by extreme spring warming and brightening, but moderate rainfall deficits, yet registering the fastest transition between wet winter conditions and extreme summer drought. Using 11 vegetation models, we show that spring conditions promoted increased vegetation growth, which, in turn, contributed to fast soil moisture depletion, amplifying the summer drought. We find regional asymmetries in summer ecosystem carbon fluxes: increased (reduced) sink in the northern (southern) areas affected by drought. These asymmetries can be explained by distinct legacy effects of spring growth and of water-use efficiency dynamics mediated by vegetation composition, rather than by distinct ecosystem responses to summer heat/drought. The asymmetries in carbon and water exchanges during spring and summer 2018 suggest that future land-management strategies could influence patterns of summer heat waves and droughts under long-term warming
    corecore