1,409 research outputs found

    Turbulence characteristics of the B\"{o}dewadt layer in a large enclosed rotor-stator system

    Get PDF
    A three-dimensional (3D) direct numerical simulation is combined with a laboratory study to describe the turbulent flow in an enclosed annular rotor-stator cavity characterized by a large aspect ratio G=(b-a)/h=18.32 and a small radius ratio a/b=0.152, where a and b are the inner and outer radii of the rotating disk and h is the interdisk spacing. The rotation rate Omega under consideration is equivalent to the rotational Reynolds number Re=Omegab2/nu=9.5 x 104, where nu is the kinematic viscosity of the fluid. This corresponds to a value at which an experiment carried out at the laboratory has shown that the stator boundary layer is turbulent, whereas the rotor boundary layer is still laminar. Comparisons of the 3D computed solution with velocity measurements have given good agreement for the mean and turbulent fields. The results enhance evidence of weak turbulence at this Reynolds number, by comparing the turbulence properties with available data in the literature. An approximately self-similar boundary layer behavior is observed along the stator side. The reduction of the structural parameter a1 under the typical value 0.15 and the variation in the wall-normal direction of the different characteristic angles show that this boundary layer is three-dimensional. A quadrant analysis of conditionally averaged velocities is performed to identify the contributions of different events (ejections and sweeps) on the Reynolds shear stress producing vortical structures. The asymmetries observed in the conditionally averaged quadrant analysis are dominated by Reynolds stress-producing events in this B\"{o}dewadt layer. Moreover, case 1 vortices (with a positive wall induced velocity) are found to be the major source of generation of special strong events, in agreement with the conclusions of Lygren and Andersson.Comment: 16 page

    Effect of Condensed Tannins in Sainfoin on \u3cem\u3ein Vitro\u3c/em\u3e Protein Solubility of Lucerne

    Get PDF
    Proteins of fresh legume forages such as lucerne are highly degraded in the rumen, resulting in their inefficient use by the animal. The condensed tannins (CT) present in some forages can improve the nutritional value of these forages and of associated feeds in the diet. Previous in vitro work (Waghorn & Shelton, 1997) showed that CT from Lotus corniculatus are able to bind with and precipitate protein from a ryegrass/clover pasture, but when these forages were fed to sheep, the CT effects on digestion and animal performance were weak. This revealed a need for a better understanding of the mechanism of CT interaction between feeds. The present work was designed to measure, in vitro, the effects of CT in sainfoin when mixed with fresh lucerne

    Copper Heat Exchanger for the External Auxiliary Bus-Bars Routing Line in the LHC Insertion Regions

    Get PDF
    The corrector magnets and the main quadrupoles of the LHC dispersion suppressors are powered by a special superconducting line (called auxiliary bus-bars line N), external to the cold mass and housed in a 50 mm diameter stainless steel tube fixed to the cold mass. As the line is periodically connected to the cold mass, the same gaseous and liquid helium cools both the magnets and the line. The final sub-cooling process (from around 4.5 K down to 1.9 K) consists in the phase transformation from liquid to superfluid helium. Heat is extracted from the line through the magnets via their point of junction. In dispersion suppressor zones, approximately 40 m long, the sub-cooling of the line is slightly delayed with respect to the magnets. This might have an impact on the readiness of the accelerator for operation. In order to accelerate the process, a special heat exchanger has been designed. It is located in the middle of the dispersion suppressor portion of the line. Its main function consists in providing a local point of heat extraction, creating two additional lambda fronts that propagate in opposite directions towards the extremities of the line. Both the numerical model and the sub-cooling analysis are presented in the paper for different configurations of the line. The design, manufacturing and integration aspects of the heat exchanger are described

    Cryogenic and vacuum sectorisation of the LHC arcs

    Get PDF
    Following the recommendation of the LHC TC of June 20th, 1995 to introduce a separate cryogenic distribution line (QRL), which opened the possibility to have a finer cryogenic and vacuum sectorisation of the LHC machine than the original 8 arcs scheme, a working group was set up to study the implications: technical feasibility, advantages and drawbacks as well as cost of such a sectorisation (DG/DI/LE/dl, 26 July 1995). This report presents the conclusions of the Working Group. In the LHC Conceptual Design Report, ref. CERN/AC/95-05 (LHC), 20 October 1995, the so-called "Yellow Book", a complete cryostat arc (~ 2.9 km) would have to be warmed up in order to replace a defective cryomagnet. Even by coupling the two large refrigerators feeding adjacent arcs at even points to speed up the warm-up and cool down of one arc, the minimum down-time of the machine needed to replace a cryomagnet would be more than a full month (and even 52 days with only one cryoplant). Cryogenic and vacuum sectorisation of an arc into smaller sectors is technically feasible and would allow to reduce the down-times considerably (by one to three weeks with four sectors of 750 m in length, with respectively two or one cryoplants). In addition, sectorisation of the arcs may permit a more flexible quality control and commissioning of the main machine systems, including cold testing of small magnet strings. Sectorisation, described in detail in the following paragraphs, consists essentially of installing several additional cryogenic and vacuum valves as well as some insulation vacuum barriers. Additional cryogenic valves are needed in the return lines of the circuits feeding each half-cell in order to complete the isolation of the cryoline QRL from the machine, allowing intervention (i.e. venting to atmospheric pressure) on machine sectors without affecting the rest of an arc. Secondly, and for the same purpose, special vacuum and cryogenic valves must be installed, at the boundaries of machine sectors, for the circuits not passing through the cryoline QRL. Finally, some additional vacuum barriers must be installed around the magnet cold masses to divide the insulation vacuum of the magnet cryostats into independent sub-sectors, permitting to keep under insulating vacuum the cryogenically floating cold masses, while a sector (or part of it) is warmed up and opened to atmosphere. A reasonable scenario of sectorisation, namely with four 650-750 m long sectors per arc, and each consisting of 3 or 4 insulation vacuum sub-sectors with two to four half-cells, would represent an additional total cost of about 6.6 MCHF for the machine. It is estimated that this capital investment would be paid off by time savings in less than three long unscheduled interventions such as the change of a cryomagnet

    The LHC Cryomagnet Supports in Glass-Fiber Reinforced Epoxy: A Large Scale Industrial Production with High Reproducibility in Performance

    Get PDF
    The about 1700 LHC main ring super-conducting magnets are supported within their cryostats on 4700 low heat in leak column-type supports. The supports were designed to ensure a precise and stable positioning of the heavy dipole and quadrupole magnets while keeping thermal conduction heat loads within budget. A trade-off between mechanical and thermal properties, as well as cost considerations, led to the choice of glass fibre reinforced epoxy (GFRE). Resin Transfer Moulding (RTM), featuring a high level of automation and control, was the manufacturing process retained to ensure the reproducibility of the performance of the supports throughout the large production. The Spanish aerospace company EADS-CASA Espacio developed the specific RTM process, and produced the total quantity of supports between 2001 and 2004. This paper describes the development and the production of the supports, and presents the production experience and the achieved performance

    Total synthesis and biological evaluation of the tetramic acid based natural product harzianic acid and its stereoisomers

    Get PDF
    Financial support for this project was provided by Cancer Research UK (Grant No. C21383/A6950)The bioactive natural product harzianic acid was prepared for the first time in just six steps (longest linear sequence) with an overall yield of 22%. The identification of conditions to telescope amide bond formation and a Lacey-Dieckmann reaction into one pot proved important. The three stereoisomers of harzianic acid were also prepared, providing material for comparison of their biological activity. While all of the isomers promoted root growth, improved antifungal activity was unexpectedly associated with isomers in the enantiomeric series opposite that of harzianic acid.Publisher PDFPeer reviewe

    Subitizing with Variational Autoencoders

    Full text link
    Numerosity, the number of objects in a set, is a basic property of a given visual scene. Many animals develop the perceptual ability to subitize: the near-instantaneous identification of the numerosity in small sets of visual items. In computer vision, it has been shown that numerosity emerges as a statistical property in neural networks during unsupervised learning from simple synthetic images. In this work, we focus on more complex natural images using unsupervised hierarchical neural networks. Specifically, we show that variational autoencoders are able to spontaneously perform subitizing after training without supervision on a large amount images from the Salient Object Subitizing dataset. While our method is unable to outperform supervised convolutional networks for subitizing, we observe that the networks learn to encode numerosity as basic visual property. Moreover, we find that the learned representations are likely invariant to object area; an observation in alignment with studies on biological neural networks in cognitive neuroscience
    • 

    corecore