34 research outputs found

    Gender Dimorphism in Skeletal Muscle Leptin Receptors, Serum Leptin and Insulin Sensitivity

    Get PDF
    To determine if there is a gender dimorphism in the expression of leptin receptors (OB-R170, OB-R128 and OB-R98) and the protein suppressor of cytokine signaling 3 (SOCS3) in human skeletal muscle, the protein expression of OB-R, perilipin A, SOCS3 and alpha-tubulin was assessed by Western blot in muscle biopsies obtained from the m. vastus lateralis in thirty-four men (age = 27.1±6.8 yr) and thirty-three women (age = 26.7±6.7 yr). Basal serum insulin concentration and HOMA were similar in both genders. Serum leptin concentration was 3.4 times higher in women compared to men (P<0.05) and this difference remained significant after accounting for the differences in percentage of body fat or soluble leptin receptor. OB-R protein was 41% (OB-R170, P<0.05) and 163% (OB-R128, P<0.05) greater in women than men. There was no relationship between OB-R expression and the serum concentrations of leptin or 17β-estradiol. In men, muscle OB-R128 protein was inversely related to serum free testosterone. In women, OB-R98 and OB-R128 were inversely related to total serum testosterone concentration, and OB-R128 to serum free testosterone concentration. SOCS3 protein expression was similar in men and women and was not related to OB-R. In women, there was an inverse relationship between the logarithm of free testosterone and SCOS3 protein content in skeletal muscle (r = −0.46, P<0.05). In summary, there is a gender dimorphism in skeletal muscle leptin receptors expression, which can be partly explained by the influence of testosterone. SOCS3 expression in skeletal muscle is not up-regulated in women, despite very high serum leptin concentrations compared to men. The circulating form of the leptin receptor can not be used as a surrogate measure of the amount of leptin receptors expressed in skeletal muscles

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Antioxidants Markers of Professional Soccer Players During the Season and their Relationship with Competitive Performance

    Get PDF
    The aim of this study was to assess antioxidant markers before and after a mid-season of professional soccer players from the 3rd Spanish Division, and to correlate antioxidant markers with competitive performance. Sixty-five male players (age = 25.3 ± 4.2 yr, body mass = 73.2 ± 6.7 kg, body height = 177.8 ± 5.7 cm) from three soccer clubs from Cádiz (Spain) participated in the study. Body composition, maximal aerobic capacity (VO2max), and baseline antioxidant blood markers (Total Antioxidant Status (TAS) and Reduced glutathione/Oxidized glutathione ratio) were assessed in the first week of the championship season (pre-test) and after 18 weeks in the mid-season (post-test). Soccer performance was registered according to the official classification ranking at both the mid-season and at the end of the season; ranking positions for Team A were 2nd and 1st, for Team B were 5th and 5th, while for Team C were 12th and 14th, respectively. Regression analyses showed that TAS and VO2max were able to independently predict (p < 0.05) performance in our participants. Moreover, antioxidant levels showed significant main effects on performance (p < 0.001); where a higher antioxidant capacity was observed in the best performance soccer team, both before and after the mid-season. Notwithstanding, the competitive period compromised the antioxidant status since TAS levels significantly decreased after the 18-week training program and competition compared with baseline values in all soccer teams (p < 0.001). These results suggest the need of monitoring antioxidants in soccer players to prevent excessive oxidative stress and cellular damage which could compromise success in competition, by adjusting the training loads, diet or ergogenic aids, if needed.Ye

    Impact of data averaging strategies on V̇O2max assessment: Mathematical modeling and reliability

    No full text
    Background: No consensus exists on how to average data to optimize VO2max assessment. Although the VO2max value is reduced with larger averaging blocks, no mathematical procedure is available to account for the effect of the length of the averaging block on VO2max. Aims: To determine the effect that the number of breaths or seconds included in the averaging block has on the VO2max value and its reproducibility and to develop correction equations to standardize VO2max values obtained with different averaging strategies. Methods: Eighty‐four subjects performed duplicate incremental tests to exhaustion (IE) in the cycle ergometer and/or treadmill using two metabolic carts (Vyntus and Vmax N29). Rolling breath averages and fixed time averages were calculated from breath‐by‐breath data from 6 to 60 breaths or seconds. Results: VO2max decayed from 6 to 60 breath averages by 10% in low fit (VO2max 0.97). There was a linear‐log relationship between the number of breaths or seconds in the averaging block and VO2max (R2 > 0.99, P < 0.001), and specific equations were developed to standardize VO2max values to a fixed number of breaths or seconds. Reproducibility was higher in trained than low‐fit subjects and not influenced by the averaging strategy, exercise mode, maximal respiratory rate, or IE protocol. Conclusions: The VO2max decreases following a linear‐log function with the number of breaths or seconds included in the averaging block and can be corrected with specific equations as those developed here
    corecore