115 research outputs found
DNA binding shifts the redox potential of the transcription factor SoxR
Electrochemistry measurements on DNA-modified electrodes are used to probe the effects of binding to DNA on the redox potential of SoxR, a transcription factor that contains a [2Fe-2S] cluster and is activated through oxidation. A DNA-bound potential of +200 mV versus NHE (normal hydrogen electrode) is found for SoxR isolated from Escherichia coli and Pseudomonas aeruginosa. This potential value corresponds to a dramatic shift of +490 mV versus values found in the absence of DNA. Using Redmond red as a covalently bound redox reporter affixed above the SoxR binding site, we also see, associated with SoxR binding, an attenuation in the Redmond red signal compared with that for Redmond red attached below the SoxR binding site. This observation is consistent with a SoxR-binding-induced structural distortion in the DNA base stack that inhibits DNA-mediated charge transport to the Redmond red probe. The dramatic shift in potential for DNA-bound SoxR compared with the free form is thus reconciled based on a high-energy conformational change in the SoxR–DNA complex. The substantial positive shift in potential for DNA-bound SoxR furthermore indicates that, in the reducing intracellular environment, DNA-bound SoxR is primarily in the reduced form; the activation of DNA-bound SoxR would then be limited to strong oxidants, making SoxR an effective sensor for oxidative stress. These results more generally underscore the importance of using DNA electrochemistry to determine DNA-bound potentials for redox-sensitive transcription factors because such binding can dramatically affect this key protein property
Crustal structure of the Lazufre volcanic complex and the Southern Puna from 3-D inversion of magnetotelluric data: Implications for surface uplift and evidence for melt storage and hydrothermal fluids
The Central Andes are unique in the global system of subduction zones in that a significant, high-altitude plateau has formed above a subduction zone. In this region, both subduction and the associated magmatism have been shown to vary in both space and time. Geophysical data have been invaluable in determining the subsurface structure of this region. Extensive seismic studies have determined the regional-scale distribution of partial melt in the crust and upper mantle. Magnetotelluric studies have been effective in providing independent constraints on the quantity and composition of partial melt in the crust and upper mantle. Geodetic studies have shown that a small number of volcanic centers exhibit persistent, long-term uplift that may indicate the formation of plutons or future eruptions.
This paper describes a detailed study of the Southern Puna using magnetotelluric (MT) data. This region is located at the southern limit of the Central Andes in a region where a recent transition from flat-slab subduction to normal subduction has caused an increase in magmatism, in addition to hypothesized lithospheric delamination. It is also a region where an extensive zone adjacent to the volcanic arc is undergoing surface uplift, located near Volcán Lastarria and Cordon del Azufre (collectively called Lazufre). The main goals of the work are to define the crustal structure and to investigate processes that may cause surface uplift of relatively large regions not associated with active volcanism.
As part of the PLUTONS project, MT data were collected on an east-west transect (approximately along 25°S) that extended across the Southern Puna, from Lazufre to north of Cerro Galan. The data were combined with previously collected MT data around Lazufre and inverted to give a 3-D resistivity model of the crust. The low resistivity of the crust resulted in limited sensitivity to mantle structure. A number of major crustal conductors were detected and included (1) a mid-crustal conductor extending eastward from the volcanic arc as far as the Salar de Antofalla; (2) an upper- to mid-crustal conductor located north of Cerro Galan; and (3) a conductor that rises westward from (1) and terminates directly beneath the region of surface uplift at Lazufre. These conductors are broadly coincident with the location of crustal lowshear-wave anomalies. The conductive features were interpreted to be due to zones of partial melt stored in the crust, and petrological data were used to estimate melt fractions. Below Lazufre, it is likely that aqueous fluids contribute to the high conductivity, which is observed within the depth range of the inflation source, giving evidence that the surface uplift may be associated with both magmatic and hydrothermal processes
Preliminary data on the structure and potential of the Tocomar geothermal field (Puna plateau, Argentina).
AbstractThis study presents new stratigraphic, structural and hydrogeological data on the Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina), together with preliminary geochemical and magnetotelluric data.The main geothermal reservoir is located within the fractured Pre-Palaeozoic–Ordovician units. The reservoir is recharged by meteoric waters. Geothermal fluids upwell where main regional structures intersect secondary structures associated with the development of the Tocomar basin. Preliminary data indicate a reservoir temperature of ∼ 200° C and a local geothermal gradient of ∼ 130° C/km associated with the Quaternary volcanic activity in the Tocomar area
The Promoter of Rv0560c Is Induced by Salicylate and Structurally-Related Compounds in Mycobacterium tuberculosis
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a major global health threat. During infection, bacteria are believed to encounter adverse conditions such as iron depletion. Mycobacteria synthesize iron-sequestering mycobactins, which are essential for survival in the host, via the intermediate salicylate. Salicylate is a ubiquitous compound which is known to induce a mild antibiotic resistance phenotype. In M. tuberculosis salicylate highly induces the expression of Rv0560c, a putative methyltransferase. We identified and characterized the promoter and regulatory elements of Rv0560c. PRv0560c activity was highly inducible by salicylate in a dose-dependent manner. The induction kinetics of PRv0560c were slow, taking several days to reach maximal activity, which was sustained over several weeks. Promoter activity could also be induced by compounds structurally related to salicylate, such as aspirin or para-aminosalicylic acid, but not by benzoate, indicating that induction is specific to a structural motif. The −10 and −35 promoter elements were identified and residues involved in regulation of promoter activity were identified in close proximity to an inverted repeat spanning the −35 promoter element. We conclude that Rv0560c expression is controlled by a yet unknown repressor via a highly-inducible promoter
Stability of Metabolic Correlations under Changing Environmental Conditions in Escherichia coli – A Systems Approach
Background: Biological systems adapt to changing environments by reorganizing their cellular and physiological program with metabolites representing one important response level. Different stresses lead to both conserved and specific responses on the metabolite level which should be reflected in the underlying metabolic network. Methodology/Principal Findings: Starting from experimental data obtained by a GC-MS based high-throughput metabolic profiling technology we here develop an approach that: (1) extracts network representations from metabolic condition-dependent data by using pairwise correlations, (2) determines the sets of stable and condition-dependent correlations based on a combination of statistical significance and homogeneity tests, and (3) can identify metabolites related to the stress response, which goes beyond simple observations about the changes of metabolic concentrations. The approach was tested with Escherichia coli as a model organism observed under four different environmental stress conditions (cold stress, heat stress, oxidative stress, lactose diauxie) and control unperturbed conditions. By constructing the stable network component, which displays a scale free topology and small-world characteristics, we demonstrated that: (1) metabolite hubs in this reconstructed correlation networks are significantly enriched for those contained in biochemical networks such as EcoCyc, (2) particular components of the stable network are enriched for functionally related biochemical pathways, and (3) independently of the response scale, based on their importance in the reorganization of the correlation network a set of metabolites can be identified which represent hypothetical candidates for adjusting to a stress-specific response. Conclusions/Significance: Network-based tools allowed the identification of stress-dependent and general metabolic correlation networks. This correlation-network-based approach does not rely on major changes in concentration to identify metabolites important for stress adaptation, but rather on the changes in network properties with respect to metabolites. This should represent a useful complementary technique in addition to more classical approaches
Differential Gene Expression by RamA in Ciprofloxacin-Resistant Salmonella Typhimurium
Overexpression of ramA has been implicated in resistance to multiple drugs in several enterobacterial pathogens. In the present study, Salmonella Typhimurium strain LTL with constitutive expression of ramA was compared to its ramA-deletion mutant by employing both DNA microarrays and phenotype microarrays (PM). The mutant strain with the disruption of ramA showed differential expression of at least 33 genes involved in 11 functional groups. The study confirmed at the transcriptional level that the constitutive expression of ramA was directly associated with increased expression of multidrug efflux pump AcrAB-TolC and decreased expression of porin protein OmpF, thereby conferring multiple drug resistance phenotype. Compared to the parent strain constitutively expressing ramA, the ramA mutant had increased susceptibility to over 70 antimicrobials and toxic compounds. The PM analysis also uncovered that the ramA mutant was better in utilization of 10 carbon sources and 5 phosphorus sources. This study suggested that the constitutive expression of ramA locus regulate not only multidrug efflux pump and accessory genes but also genes involved in carbon metabolic pathways
Glucose-6-Phosphate Dehydrogenase Protects Escherichia coli from Tellurite-Mediated Oxidative Stress
The tellurium oxyanion tellurite induces oxidative stress in most microorganisms. In Escherichia coli, tellurite exposure results in high levels of oxidized proteins and membrane lipid peroxides, inactivation of oxidation-sensitive enzymes and reduced glutathione content. In this work, we show that tellurite-exposed E. coli exhibits transcriptional activation of the zwf gene, encoding glucose 6-phosphate dehydrogenase (G6PDH), which in turn results in augmented synthesis of reduced nicotinamide adenine dinucleotide phosphate (NADPH). Increased zwf transcription under tellurite stress results mainly from reactive oxygen species (ROS) generation and not from a depletion of cellular glutathione. In addition, the observed increase of G6PDH activity was paralleled by accumulation of glucose-6-phosphate (G6P), suggesting a metabolic flux shift toward the pentose phosphate shunt. Upon zwf overexpression, bacterial cells also show increased levels of antioxidant molecules (NADPH, GSH), better-protected oxidation-sensitive enzymes and decreased amounts of oxidized proteins and membrane lipids. These results suggest that by increasing NADPH content, G6PDH plays an important role in E. coli survival under tellurite stress
Elucidation of the RamA Regulon in Klebsiella pneumoniae Reveals a Role in LPS Regulation
Klebsiella pneumoniae is a significant human pathogen, in part due to high rates of multidrug resistance. RamA is an intrinsic regulator in K. pneumoniae established to be important for the bacterial response to antimicrobial challenge; however, little is known about its possible wider regulatory role in this organism during infection. In this work, we demonstrate that RamA is a global transcriptional regulator that significantly perturbs the transcriptional landscape of K. pneumoniae, resulting in altered microbe-drug or microbe-host response. This is largely due to the direct regulation of 68 genes associated with a myriad of cellular functions. Importantly, RamA directly binds and activates the lpxC, lpxL-2 and lpxO genes associated with lipid A biosynthesis, thus resulting in modifications within the lipid A moiety of the lipopolysaccharide. RamA-mediated alterations decrease susceptibility to colistin E, polymyxin B and human cationic antimicrobial peptide LL-37. Increased RamA levels reduce K. pneumoniae adhesion and uptake into macrophages, which is supported by in vivo infection studies, that demonstrate increased systemic dissemination of ramA overexpressing K. pneumoniae. These data establish that RamA-mediated regulation directly perturbs microbial surface properties, including lipid A biosynthesis, which facilitate evasion from the innate host response. This highlights RamA as a global regulator that confers pathoadaptive phenotypes with implications for our understanding of the pathogenesis of Enterobacter, Salmonella and Citrobacter spp. that express orthologous RamA proteins
- …