19 research outputs found

    A bicyclic α-iminophosphonate improves cognitive decline in 5xFAD murine model of neurodegeneration

    Get PDF
    I2 receptors (I2-IR) are widely distributed in the central nervous system. I2-IR ligands are associated with a neuroprotective effect but, as I2-IR structure remains unknown, the discovery of better and more selective ligands is necessary to understand the pharmacological and molecular implications of I2-IR. Recently, we described a new imidazoline-structure family which showed high affinity and selectivity for I2-IR. In vivo studies in mice indicated a neuroprotective role and revealed beneficial effects in behaviour and cognition with a murine model of neurodegeneration, senescence-accelerated prone mouse (SAMP8). Herein, we report a novel non-imidazoline-structure of bicyclic α-iminophosphonates family with high affinities for I2-IR. In vivo studies in 5X-FAD mice (a transgenic representative model of AD) and SAMP8 mice (a model of neurodegeneration linked to aging) showed an improvement in behaviour and cognition, a reduction of AD hallmarks and of neuroinflammation markers for the mice treated with the lead compound B06. After evaluating several pathways associated with neurodegeneration, we demonstrated that CaN pathway plays a critical role on the neuroprotective effects of I2-IR ligands on SAMP8 mice model. To rule out warnings of the novel family, we calculated DMPK and physicochemical properties for the novel bicyclic α-iminophosphonates. As well, we carried out drug metabolism, safety studies and in vivo pharmacokinetics for lead compound B06. In summary, we present a novel family of I2-IR ligands, its effectiveness in in vivo models and the possible neuroprotective molecular mechanism mediated by them. This highlights that the modulation of I2-IR by bicyclic α-iminophosphonates may open a new therapeutic venue for unmet neurodegenerative conditions

    Bicyclic alfa-iminophosphonates as high affinity imidazoline I2 receptor ligands for Alzheimer's disease

    Get PDF
    Imidazoline I2 receptors (I2-IR), widely distributed in the CNS and altered in patients that suffered from neurodegenerative disorders, are orphan from the structural point of view and new I2-IR ligands are urgently required for improving their pharmacological characterization. We report the synthesis and 3D-QSAR studies of a new family of bicyclic α-iminophosphonates endowed with relevant affinities for human brain I2-IR. Acute treatment in mice with a selected compound significantly decreased the FADD protein in the hippocampus, a key marker in neuroprotective actions. Additionally, in vivo studies in the familial Alzheimer's disease 5xFAD murine model revealed beneficial effects in behavior and cognition. These results are supported by changes in molecular pathways related to cognitive decline and Alzheimer's disease. Therefore bicyclic α-iminophosphonates are tools that may open new therapeutic avenues for I2-IR, particularly for unmet neurodegenerative conditions

    In Vitro and In Vivo Activity of a Palladacycle Complex on Leishmania (Leishmania) amazonensis

    Get PDF
    Leishmaniasis is an important public health problem with an estimated annual incidence of 1.5 million of new human cases of cutaneous leishmaniasis and 500,000 of visceral leishmaniasis. Treatment of the diseases is limited by toxicity and parasite resistance to the drugs currently in use, validating the need to develop new leishmanicidal compounds. We evaluated the killing by the palladacycle complex DPPE 1.2 of Leishmania (Leishmania) amazonensis, an agent of human cutaneous leishmaniasis in the Amazon region, Brazil. DPPE 1.2 destroyed promastigotes of L. (L.) amazonensis in vitro at nanomolar concentrations, whereas intracellular amastigotes were killed at drug concentrations 10-fold less toxic than those displayed to macrophages. L. (L.) amazonensis-infected BALB/c mice treated by intralesional injection of DPPE 1.2 exhibited a significant decrease of foot lesion sizes and a 97% reduction of parasite burdens when compared to untreated controls. Additional experiments indicated the inhibition of the cathepsin B activity of L. (L.) amazonensis amastigotes by DPPE 1.2. Further studies are needed to explore the potential of DPPE 1.2 as an additional option for the chemotherapy of leishmaniasis

    microRNAs Control Antiviral Immune Response, Cell Death and Chemotaxis Pathways in Human Neuronal Precursor Cells (NPCs) during Zika Virus Infection

    No full text
    Viral infections have always been a serious burden to public health, increasing morbidity and mortality rates worldwide. Zika virus (ZIKV) is a flavivirus transmitted by the Aedes aegypti vector and the causative agent of severe fetal neuropathogenesis and microcephaly. The virus crosses the placenta and reaches the fetal brain, mainly causing the death of neuronal precursor cells (NPCs), glial inflammation, and subsequent tissue damage. Genetic differences, mainly related to the antiviral immune response and cell death pathways greatly influence the susceptibility to infection. These components are modulated by many factors, including microRNAs (miRNAs). MiRNAs are small noncoding RNAs that regulate post-transcriptionally the overall gene expression, including genes for the neurodevelopment and the formation of neural circuits. In this context, we investigated the pathways and target genes of miRNAs modulated in NPCs infected with ZIKV. We observed downregulation of miR-302b, miR-302c and miR-194, whereas miR-30c was upregulated in ZIKV infected human NPCs in vitro. The analysis of a public dataset of ZIKV-infected human NPCs evidenced 262 upregulated and 3 downregulated genes, of which 142 were the target of the aforementioned miRNAs. Further, we confirmed a correlation between miRNA and target genes affecting pathways related to antiviral immune response, cell death and immune cells chemotaxis, all of which could contribute to the establishment of microcephaly and brain lesions. Here, we suggest that miRNAs target gene expression in infected NPCs, directly contributing to the pathogenesis of fetal microcephaly

    Gut-licensed IFNÎł + NK cells drive LAMP1 + TRAIL + anti-inflammatory astrocytes

    Full text link
    Astrocytes are glial cells that are abundant in the central nervous system (CNS) and that have important homeostatic and disease-promoting functions1. However, little is known about the homeostatic anti-inflammatory activities of astrocytes and their regulation. Here, using high-throughput flow cytometry screening, single-cell RNA sequencing and CRISPR-Cas9-based cell-specific in vivo genetic perturbations in mice, we identify a subset of astrocytes that expresses the lysosomal protein LAMP12 and the death receptor ligand TRAIL3. LAMP1+TRAIL+ astrocytes limit inflammation in the CNS by inducing T cell apoptosis through TRAIL-DR5 signalling. In homeostatic conditions, the expression of TRAIL in astrocytes is driven by interferon-Îł (IFNÎł) produced by meningeal natural killer (NK) cells, in which IFNÎł expression is modulated by the gut microbiome. TRAIL expression in astrocytes is repressed by molecules produced by T cells and microglia in the context of inflammation. Altogether, we show that LAMP1+TRAIL+ astrocytes limit CNS inflammation by inducing T cell apoptosis, and that this astrocyte subset is maintained by meningeal IFNÎł+ NK cells that are licensed by the microbiome

    Gut-licensed IFNÎł+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes

    No full text
    Astrocytes are glial cells that are abundant in the central nervous system (CNS) and that have important homeostatic and disease-promoting functions1. However, little is known about the homeostatic anti-inflammatory activities of astrocytes and their regulation. Here, using high-throughput flow cytometry screening, single-cell RNA sequencing and CRISPR–Cas9-based cell-specific in vivo genetic perturbations in mice, we identify a subset of astrocytes that expresses the lysosomal protein LAMP12 and the death receptor ligand TRAIL3. LAMP1+TRAIL+ astrocytes limit inflammation in the CNS by inducing T cell apoptosis through TRAIL–DR5 signalling. In homeostatic conditions, the expression of TRAIL in astrocytes is driven by interferon-γ (IFNγ) produced by meningeal natural killer (NK) cells, in which IFNγ expression is modulated by the gut microbiome. TRAIL expression in astrocytes is repressed by molecules produced by T cells and microglia in the context of inflammation. Altogether, we show that LAMP1+TRAIL+ astrocytes limit CNS inflammation by inducing T cell apoptosis, and that this astrocyte subset is maintained by meningeal IFNγ+ NK cells that are licensed by the microbiome.Fil: Sanmarco, Liliana Maria. Harvard Medical School; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wheeler, Michael A.. Harvard Medical School; Estados UnidosFil: Gutiérrez Vázquez, Cristina. Harvard Medical School; Estados UnidosFil: Polonio Manganeli, Carolina. Harvard Medical School; Estados UnidosFil: Linnerbauer, Mathias. Harvard Medical School; Estados UnidosFil: Pinho Ribeiro, Felipe A.. Harvard Medical School; Estados UnidosFil: Li, Zhaorong. Harvard Medical School; Estados UnidosFil: Giovannoni, Federico. Harvard Medical School; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Batterman, Katelyn V.. University Of Boston. School Of Medicine.; Estados UnidosFil: Scalisi, Giulia. Harvard Medical School; Estados UnidosFil: Zandee, Stephanie E. J.. University of Montreal; CanadáFil: Heck, Evelyn Sabrina. Harvard Medical School; Estados Unidos. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alsuwailm, Moneera. Harvard Medical School; Estados UnidosFil: Rosene, Douglas L.. University Of Boston. School Of Medicine.; Estados UnidosFil: Becher, Burkhard. Universitat Zurich; SuizaFil: Chiu, Isaac M.. Harvard Medical School; Estados UnidosFil: Prat, Alexandre. University of Montreal; CanadáFil: Quintana, Francisco Javier. Harvard Medical School; Estados Unido

    AHR is a Zika virus host factor and a candidate target for antiviral therapy

    No full text
    Zika virus (ZIKV) is a flavivirus linked to multiple birth defects including microcephaly, known as congenital ZIKV syndrome. The identification of host factors involved in ZIKV replication may guide efficacious therapeutic interventions. In genome-wide transcriptional studies, we found that ZIKV infection triggers aryl hydrocarbon receptor (AHR) activation. Specifically, ZIKV infection induces kynurenine (Kyn) production, which activates AHR, limiting the production of type I interferons (IFN-I) involved in antiviral immunity. Moreover, ZIKV-triggered AHR activation suppresses intrinsic immunity driven by the promyelocytic leukemia (PML) protein, which limits ZIKV replication. AHR inhibition suppressed the replication of multiple ZIKV strains in vitro and also suppressed replication of the related flavivirus dengue. Finally, AHR inhibition with a nanoparticle-delivered AHR antagonist or an inhibitor developed for human use limited ZIKV replication and ameliorated newborn microcephaly in a murine model. In summary, we identified AHR as a host factor for ZIKV replication and PML protein as a driver of anti-ZIKV intrinsic immunity

    Lactate limits CNS autoimmunity by stabilizing HIF-1α in dendritic cells

    Get PDF
    Dendritic cells (DCs) have a role in the development and activation of self-reactive pathogenic T cells 1,2. Genetic variants that are associated with the function of DCs have been linked to autoimmune disorders 3,4, and DCs are therefore attractive therapeutic targets for such diseases. However, developing DC-targeted therapies for autoimmunity requires identification of the mechanisms that regulate DC function. Here, using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies, we identify a regulatory loop of negative feedback that operates in DCs to limit immunopathology. Specifically, we find that lactate, produced by activated DCs and other immune cells, boosts the expression of NDUFA4L2 through a mechanism mediated by hypoxia-inducible factor 1α (HIF-1α). NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs that are involved in the control of pathogenic autoimmune T cells. We also engineer a probiotic that produces lactate and suppresses T cell autoimmunity through the activation of HIF-1α–NDUFA4L2 signalling in DCs. In summary, we identify an immunometabolic pathway that regulates DC function, and develop a synthetic probiotic for its therapeutic activationThis work was supported by grants NS102807, ES02530, ES029136 and AI126880 from the National Institutes of Health (NIH); RG4111A1 and JF2161-A-5 from the National Multiple Sclerosis Society; RSG-14-198-01-LIB from the American Cancer Society; and PA-160408459 from the International Progressive MS Alliance (to F.J.Q.). C.M.P. was supported by a fellowship from FAPESP BEPE (2019/13731-0) and by the Herbert R. & Jeanne C. Mayer Foundation; G.F.L. received support from a grant from the Swedish Research Council (2021-06735); C.G.-V. was supported by an Alfonso Martin Escudero Foundation postdoctoral fellowship and by a postdoctoral fellowship (ALTF 610-2017) from the European Molecular Biology Organization; C.-C.C. received support from a postdoctoral research abroad program (104-2917-I-564-024) from the Ministry of Science and Technology, Taiwan; C.M.R.-G. was supported by a predoctoral F.P.U. fellowship from the Ministry of Economy and Competitiveness and by the European Union FEDERER program; M.A.W. was supported by NIH (1K99NS114111, F32NS101790 and T32CA207201), the Program in Interdisciplinary Neuroscience and the Women’s Brain Initiative at Brigham and Women’s Hospital; T.I. was supported by an EMBO postdoctoral fellowship (ALTF: 1009–2021) and H.-G.L. was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A3A14039088). We thank L. Glimcher and J. R. Cubillos Ruiz for sharing ItgaxXbp1 mice; S. McSorley for providing the S. typhimurium strain; H. Xu and M. Lehtinen for providing training on CSF extraction; all members of the F.J.Q. laboratory for advice and discussions; R. Krishnan for technical assistance with flow cytometry studies; and the NeuroTechnology Studio at Brigham and Women’s Hospital for providing access to Seahorse instruments. Cre f lo
    corecore