80 research outputs found

    Analysis of thermal effects in endoscopic nanocarriers-based photodynamic therapy applied to esophageal diseases

    Get PDF
    In this work we propose a predictive model that allows the study of thermal effects produced when the optical radiation interacts with an esophageal or stomach disease with gold nanoparticles embedded. The model takes into account light distribution in the tumor tissue by means of a Monte Carlo method. Mie theory is used to obtain the gold nanoparticles optical properties and the thermal model employed is based on the bio-heat equation. The complete model was applied to two types of tumoral tissue (squamous cell carcinoma located in the esophagus and adenocarcinoma in the stomach) in order to study the thermal effects induced by the inclusion of gold nanoparticles.This work has been partially supported by the project MAT2012-38664-C02-01 of the Spanish Ministery of Economy and Competitiveness, by the Czech Grant Agency under grant P102/11/1376, by the Czech Ministry of Industry and Trade under grant FR-TI2/705, by the Czech Ministry of Education under grant LD12067, and by the EU COST Action IC1101

    A Claudin-9–Based Ion Permeability Barrier Is Essential for Hearing

    Get PDF
    Hereditary hearing loss is one of the most common birth defects, yet the majority of genes required for audition is thought to remain unidentified. Ethylnitrosourea (ENU)–mutagenesis has been a valuable approach for generating new animal models of deafness and discovering previously unrecognized gene functions. Here we report on the characterization of a new ENU–induced mouse mutant (nmf329) that exhibits recessively inherited deafness. We found a widespread loss of sensory hair cells in the hearing organs of nmf329 mice after the second week of life. Positional cloning revealed that the nmf329 strain carries a missense mutation in the claudin-9 gene, which encodes a tight junction protein with unknown biological function. In an epithelial cell line, heterologous expression of wild-type claudin-9 reduced the paracellular permeability to Na+ and K+, and the nmf329 mutation eliminated this ion barrier function without affecting the plasma membrane localization of claudin-9. In the nmf329 mouse line, the perilymphatic K+ concentration was found to be elevated, suggesting that the cochlear tight junctions were dysfunctional. Furthermore, the hair-cell loss in the claudin-9–defective cochlea was rescued in vitro when the explanted hearing organs were cultured in a low-K+ milieu and in vivo when the endocochlear K+-driving force was diminished by deletion of the pou3f4 gene. Overall, our data indicate that claudin-9 is required for the preservation of sensory cells in the hearing organ because claudin-9–defective tight junctions fail to shield the basolateral side of hair cells from the K+-rich endolymph. In the tight-junction complexes of hair cells, claudin-9 is localized specifically to a subdomain that is underneath more apical tight-junction strands formed by other claudins. Thus, the analysis of claudin-9 mutant mice suggests that even the deeper (subapical) tight-junction strands have biologically important ion barrier function

    Myelin Proteomics: Molecular Anatomy of an Insulating Sheath

    Get PDF
    Fast-transmitting vertebrate axons are electrically insulated with multiple layers of nonconductive plasma membrane of glial cell origin, termed myelin. The myelin membrane is dominated by lipids, and its protein composition has historically been viewed to be of very low complexity. In this review, we discuss an updated reference compendium of 342 proteins associated with central nervous system myelin that represents a valuable resource for analyzing myelin biogenesis and white matter homeostasis. Cataloging the myelin proteome has been made possible by technical advances in the separation and mass spectrometric detection of proteins, also referred to as proteomics. This led to the identification of a large number of novel myelin-associated proteins, many of which represent low abundant components involved in catalytic activities, the cytoskeleton, vesicular trafficking, or cell adhesion. By mass spectrometry-based quantification, proteolipid protein and myelin basic protein constitute 17% and 8% of total myelin protein, respectively, suggesting that their abundance was previously overestimated. As the biochemical profile of myelin-associated proteins is highly reproducible, differential proteome analyses can be applied to material isolated from patients or animal models of myelin-related diseases such as multiple sclerosis and leukodystrophies

    Organization of multiprotein complexes at cell–cell junctions

    Get PDF
    The formation of stable cell–cell contacts is required for the generation of barrier-forming sheets of epithelial and endothelial cells. During various physiological processes like tissue development, wound healing or tumorigenesis, cellular junctions are reorganized to allow the release or the incorporation of individual cells. Cell–cell contact formation is regulated by multiprotein complexes which are localized at specific structures along the lateral cell junctions like the tight junctions and adherens junctions and which are targeted to these site through their association with cell adhesion molecules. Recent evidence indicates that several major protein complexes exist which have distinct functions during junction formation. However, this evidence also indicates that their composition is dynamic and subject to changes depending on the state of junction maturation. Thus, cell–cell contact formation and integrity is regulated by a complex network of protein complexes. Imbalancing this network by oncogenic proteins or pathogens results in barrier breakdown and eventually in cancer. Here, I will review the molecular organization of the major multiprotein complexes at junctions of epithelial cells and discuss their function in cell–cell contact formation and maintenance

    The node of Ranvier in CNS pathology

    Get PDF

    Hot deformation behavior and processing maps of diamond/Cu composites

    Get PDF
    The hot deformation behaviors of 50 vol pct uncoated and Cr-coated diamond/Cu composites were investigated using hot isothermal compression tests under the temperature and strain rate ranging from 1073 K to 1273 K (800 C to 1000 C) and from 0.001 to 5 s1, respectively. Dynamic recrystallization was determined to be the primary restoration mechanism during deformation. The Cr3C2 coating enhanced the interfacial bonding and resulted in a larger flow stress for the Cr-coated diamond/Cu composites. Moreover, the enhanced interfacial affinity led to a higher activation energy for the Cr-coated diamond/Cu composites (238 kJ/mol) than for their uncoated counterparts (205 kJ/mol). The strain-rate-dependent constitutive equations of the diamond/Cu composites were derived based on the Arrhenius model, and a high correlation (R = 0.99) was observed between the calculated flow stresses and experimental data. With the help of processing maps, hot extrusions were realized at 1123 K/0.01 s1 and 1153 K/0.01 s1 (850 C/0.01 s1 and 880 C/0.01 s1) for the uncoated and coated diamond/Cu composites, respectively. The combination of interface optimization and hot extrusion led to increases of the density and thermal conductivity, thereby providing a promising route for the fabrication of diamond/Cu composites

    The Polarity Protein Scribble Regulates Myelination and Remyelination in the Central Nervous System

    Get PDF
    The development and regeneration of myelin by oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), requires profound changes in cell shape that lead to myelin sheath initiation and formation. Here, we demonstrate a requirement for the basal polarity complex protein Scribble in CNS myelination and remyelination. Scribble is expressed throughout oligodendroglial development and is up-regulated in mature oligodendrocytes where it is localised to both developing and mature CNS myelin sheaths. Knockdown of Scribble expression in cultured oligodendroglia results in disrupted morphology and myelination initiation. When Scribble expression is conditionally eliminated in the myelinating glia of transgenic mice, myelin initiation in CNS is disrupted, both during development and following focal demyelination, and longitudinal extension of the myelin sheath is disrupted. At later stages of myelination, Scribble acts to negatively regulate myelin thickness whilst suppressing the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAP) kinase pathway, and localises to non-compact myelin flanking the node of Ranvier where it is required for paranodal axo-glial adhesion. These findings demonstrate an essential role for the evolutionarily-conserved regulators of intracellular polarity in myelination and remyelination

    A putative functional role for oligodendrocytes in mood regulation

    Get PDF
    Altered glial structure and function is implicated in several major mental illnesses and increasing evidence specifically links changes in oligodendrocytes with disrupted mood regulation. Low density and reduced expression of oligodendrocyte-specific gene transcripts in postmortem human subjects points toward decreased oligodendrocyte function in most of the major mental illnesses. Similar features are observed in rodent models of stress-induced depressive-like phenotypes, such as the unpredictable chronic mild stress and chronic corticosterone exposure, suggesting an effect downstream from stress. However, whether oligodendrocyte changes are a causal component of psychiatric phenotypes is not known. Traditional views that identify oligodendrocytes solely as nonfunctional support cells are being challenged, and recent studies suggest a more dynamic role for oligodendrocytes in neuronal functioning than previously considered, with the region adjacent to the node of Ranvier (i.e., paranode) considered a critical region of glial–neuronal interaction. Here, we briefly review the current knowledge regarding oligodendrocyte disruptions in psychiatric disorders and related animal models, with a focus on major depression. We then highlight several rodent studies, which suggest that alterations in oligodendrocyte structure and function can produce behavioral changes that are informative of mood regulatory mechanisms. Together, these studies suggest a model, whereby impaired oligodendrocyte and possibly paranode structure and function can impact neural circuitry, leading to downstream effects related to emotionality in rodents, and potentially to mood regulation in human psychiatric disorders

    Distinct Cis Regulatory Elements Govern the Expression of TAG1 in Embryonic Sensory Ganglia and Spinal Cord

    Get PDF
    Cell fate commitment of spinal progenitor neurons is initiated by long-range, midline-derived, morphogens that regulate an array of transcription factors that, in turn, act sequentially or in parallel to control neuronal differentiation. Included among these are transcription factors that regulate the expression of receptors for guidance cues, thereby determining axonal trajectories. The Ig/FNIII superfamily molecules TAG1/Axonin1/CNTN2 (TAG1) and Neurofascin (Nfasc) are co-expressed in numerous neuronal cell types in the CNS and PNS – for example motor, DRG and interneurons - both promote neurite outgrowth and both are required for the architecture and function of nodes of Ranvier. The genes encoding TAG1 and Nfasc are adjacent in the genome, an arrangement which is evolutionarily conserved. To study the transcriptional network that governs TAG1 and Nfasc expression in spinal motor and commissural neurons, we set out to identify cis elements that regulate their expression. Two evolutionarily conserved DNA modules, one located between the Nfasc and TAG1 genes and the second directly 59 to the first exon and encompassing the first intron of TAG1, were identified that direct complementary expression to the CNS and PNS, respectively, of the embryonic hindbrain and spinal cord. Sequential deletions and point mutations of the CNS enhancer element revealed a 130bp element containing three conserved E-boxes required for motor neuron expression. In combination, these two elements appear to recapitulate a major part of the pattern of TAG1 expression in the embryonic nervous system
    • …
    corecore