6,272 research outputs found

    Deep learning for inferring cause of data anomalies

    Get PDF
    Daily operation of a large-scale experiment is a resource consuming task, particularly from perspectives of routine data quality monitoring. Typically, data comes from different sub-detectors and the global quality of data depends on the combinatorial performance of each of them. In this paper, the problem of identifying channels in which anomalies occurred is considered. We introduce a generic deep learning model and prove that, under reasonable assumptions, the model learns to identify 'channels' which are affected by an anomaly. Such model could be used for data quality manager cross-check and assistance and identifying good channels in anomalous data samples. The main novelty of the method is that the model does not require ground truth labels for each channel, only global flag is used. This effectively distinguishes the model from classical classification methods. Being applied to CMS data collected in the year 2010, this approach proves its ability to decompose anomaly by separate channels.Comment: Presented at ACAT 2017 conference, Seattle, US

    Reversals in nature and the nature of reversals

    Get PDF
    The asymmetric shape of reversals of the Earth's magnetic field indicates a possible connection with relaxation oscillations as they were early discussed by van der Pol. A simple mean-field dynamo model with a spherically symmetric α\alpha coefficient is analysed with view on this similarity, and a comparison of the time series and the phase space trajectories with those of paleomagnetic measurements is carried out. For highly supercritical dynamos a very good agreement with the data is achieved. Deviations of numerical reversal sequences from Poisson statistics are analysed and compared with paleomagnetic data. The role of the inner core is discussed in a spectral theoretical context and arguments and numerical evidence is compiled that the growth of the inner core might be important for the long term changes of the reversal rate and the occurrence of superchrons.Comment: 24 pages, 12 figure

    Detectability of non-differentiable generalized synchrony

    Full text link
    Generalized synchronization of chaos is a type of cooperative behavior in directionally-coupled oscillators that is characterized by existence of stable and persistent functional dependence of response trajectories from the chaotic trajectory of driving oscillator. In many practical cases this function is non-differentiable and has a very complex shape. The generalized synchrony in such cases seems to be undetectable, and only the cases, in which a differentiable synchronization function exists, are considered to make sense in practice. We show that this viewpoint is not always correct and the non-differentiable generalized synchrony can be revealed in many practical cases. Conditions for detection of generalized synchrony are derived analytically, and illustrated numerically with a simple example of non-differentiable generalized synchronization.Comment: 8 pages, 8 figures, submitted to PR

    Boosting the Figure Of Merit of LSPR-based refractive index sensing by phase-sensitive measurements

    Full text link
    Localized surface plasmon resonances possess very interesting properties for a wide variety of sensing applications. In many of the existing applications only the intensity of the reflected or transmitted signals is taken into account, while the phase information is ignored. At the center frequency of a (localized) surface plasmon resonance, the electron cloud makes the transition between in- and out-of-phase oscillation with respect to the incident wave. Here we show that this information can experimentally be extracted by performing phase-sensitive measurements, which result in linewidths that are almost one order of magnitude smaller than those for intensity based measurements. As this phase transition is an intrinsic property of a plasmon resonance, this opens up many possibilities for boosting the figure of merit (FOM) of refractive index sensing by taking into account the phase of the plasmon resonance. We experimentally investigated this for two model systems: randomly distributed gold nanodisks and gold nanorings on top of a continuous gold layer and a dielectric spacer and observed FOM values up to 8.3 and 16.5 for the respective nanoparticles

    Excitability in ramped systems: the compost-bomb instability

    Get PDF
    Copyright © 2010 The Royal SocietyOpen Access articleThe paper studies a novel excitability type where a large excitable response appears when a system’s parameter is varied gradually, or ramped, above some critical rate. This occurs even though there is a (unique) stable quiescent state for any fixed setting of the ramped parameter. We give a necessary and a sufficient condition for the existence of a critical ramping rate in a general class of slow–fast systems with folded slow (critical) manifold. Additionally, we derive an analytical condition for the critical rate by relating the excitability threshold to a canard trajectory through a folded saddle singularity. The general framework is used to explain a potential climate tipping point termed the ‘compost-bomb instability’—an explosive release of soil carbon from peatlands into the atmosphere occurs above some critical rate of global warming even though there is a unique asymptotically stable soil carbon equilibrium for any fixed atmospheric temperature

    Production of neutron-rich nuclei in fragmentation reactions of 132Sn projectiles at relativistic energies

    Full text link
    The fragmentation of neutron-rich 132Sn nuclei produced in the fission of 238U projectiles at 950 MeV/u has been investigated at the FRagment Separator (FRS) at GSI. This work represents the first investigation of fragmentation of medium-mass radioactive projectiles with a large neutron excess. The measured production cross sections of the residual nuclei are relevant for the possible use of a two-stage reaction scheme (fission+fragmentation) for the production of extremely neutron-rich medium-mass nuclei in future rare-ion-beam facilities. Moreover, the new data will provide a better understanding of the "memory" effect in fragmentation reactions.Comment: 5 pages, 3 figure

    Phase-Induced (In)-Stability in Coupled Parametric Oscillators

    Full text link
    We report results on a model of two coupled oscillators that undergo periodic parametric modulations with a phase difference θ\theta. Being to a large extent analytically solvable, the model reveals a rich θ\theta dependence of the regions of parametric resonance. In particular, the intuitive notion that anti-phase modulations are less prone to parametric resonance is confirmed for sufficiently large coupling and damping. We also compare our results to a recently reported mean field model of collective parametric instability, showing that the two-oscillator model can capture much of the qualitative behavior of the infinite system.Comment: 19 pages, 8 figures; a version with better quality figures can be found in http://hypatia.ucsd.edu/~mauro/English/publications.htm

    The two-point resistance of a resistor network: A new formulation and application to the cobweb network

    Get PDF
    We consider the problem of two-point resistance in a resistor network previously studied by one of us [F. Y. Wu, J. Phys. A {\bf 37}, 6653 (2004)]. By formulating the problem differently, we obtain a new expression for the two-point resistance between two arbitrary nodes which is simpler and can be easier to use in practice. We apply the new formulation to the cobweb resistor network to obtain the resistance between two nodes in the network. Particularly, our results prove a recently proposed conjecture on the resistance between the center node and a node on the network boundary. Our analysis also solves the spanning tree problem on the cobweb network.Comment: 14 pages, 1 figure, adding one references and discussions of special case

    Low-Dose T-3 Replacement Restores Depressed Cardiac T-3 Levels, Preserves Coronary Microvasculature and Attenuates Cardiac Dysfunction in Experimental Diabetes Mellitus

    Get PDF
    Thyroid dysfunction is common in individuals with diabetes mellitus (DM) and may contribute to the associated cardiac dysfunction. However, little is known about the extent and pathophysiological consequences of low thyroid conditions on the heart in DM. DM was induced in adult female Sprague Dawley (SD) rats by injection of nicotinamide (N; 200 mg/kg) followed by streptozotocin (STZ; 65 mg/kg). One month after STZ/N, rats were randomized to the following groups (N = 10/group): STZ/N or STZ/N + 0.03 g/mL T-3; age-matched vehicle-treated rats served as nondiabetic controls (C). After 2 months of T-3 treatment (3 months post-DM induction), left ventricular (LV) function was assessed by echocardiography and LV pressure measurements. Despite normal serum thyroid hormone (TH) levels, STZ/N treatment resulted in reductions in myocardial tissue content of THs (T-3 and T-4 : 39% and 17% reduction versus C, respectively). Tissue hypothyroidism in the DM hearts was associated with increased DIO3 deiodinase (which converts THs to inactive metabolites) altered TH transporter expression, reexpression of the fetal gene phenotype, reduced arteriolar resistance vessel density, and diminished cardiac function. Low-dose T-3 replacement largely restored cardiac tissue TH levels (T-3 and T-4 : 43% and 10% increase versus STZ/N, respectively), improved cardiac function, reversed fetal gene expression and preserved the arteriolar resistance vessel network without causing overt symptoms of hyperthyroidism. We conclude that cardiac dysfunction in chronic DM may be associated with tissue hypothyroidism despite normal serum TH levels. Low-dose T-3 replacement appears to be a safe and effective adjunct therapy to attenuate and/or reverse cardiac remodeling and dysfunction induced by experimental DM

    Probability Theory Compatible with the New Conception of Modern Thermodynamics. Economics and Crisis of Debts

    Full text link
    We show that G\"odel's negative results concerning arithmetic, which date back to the 1930s, and the ancient "sand pile" paradox (known also as "sorites paradox") pose the questions of the use of fuzzy sets and of the effect of a measuring device on the experiment. The consideration of these facts led, in thermodynamics, to a new one-parameter family of ideal gases. In turn, this leads to a new approach to probability theory (including the new notion of independent events). As applied to economics, this gives the correction, based on Friedman's rule, to Irving Fisher's "Main Law of Economics" and enables us to consider the theory of debt crisis.Comment: 48p., 14 figs., 82 refs.; more precise mathematical explanations are added. arXiv admin note: significant text overlap with arXiv:1111.610
    corecore