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Abstract

We consider the problem of two-point resistance in a resistor network previously studied by one

of us [F. Y. Wu, J. Phys. A 37, 6653 (2004)]. By formulating the problem differently, we obtain a

new expression for the two-point resistance between two arbitrary nodes which is simpler and can

be easier to use in practice. We apply the new formulation to the cobweb resistor network to obtain

the resistance between two nodes in the network. Particularly, our results prove a recently proposed

conjecture on the resistance between the center node and a node on the network boundary. Our

analysis also solves the spanning tree problem on the cobweb network.
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I. INTRODUCTION

The computation of two-point resistance in a resistor network has a long history. For a

list of relevant references see, e.g., [1]. In 2004 one of us [2] derived a compact expression

for the two-point resistance in terms of the eigenvalues and eigenvectors of the Laplacian

matrix associated with the network. The consideration was soon extended to impedance

networks by Tzeng and Wu [3] in an analysis making explicit use of the complex nature of

the Laplacian matrix. In practice, however, the use of the result obtained in [2, 3] requires full

knowledge of the eigenvalues and eigenvectors of the Laplacian matrix. Due to the fact that

the Laplacian is singular, this task is sometimes difficult to carry through [4]. In this paper

we revisit the problem of two-point resistance and derive a new and simpler expression for

the resistance. The new expression is then applied to the cobweb resistor network, a problem

which has proven to be difficult to analyze [4], and the resistance between any two nodes in

the network is obtained. Particularly, our results prove a recently proposed conjecture on

the resistance between the center node and a node on the cobweb network boundary [4]. As

a byproduct of our analysis, we solve the problem of spanning trees on the cobweb network.

The organization of this paper is as follows: In Sec. II we review the Kirchhoff formulation

of a resistance network and outline the derivation of the result of [2]. In Sec. III we present

a simpler version of the Kirchhoff formulation which is easier to analyze, obtaining a result

different from that reported in [2]. In Sec. IV the new formulation is applied to the cobweb

resistor network obtaining the resistance between any two nodes. In Sec. V we show our

results prove a recent conjecture on the resistance between the center node and a node on

the cobweb boundary. Finally in Sec. VI, we deduce the spanning tree generating function

of the cobweb network. A brief summary is given in Sec. VII.

II. FORMULATION OF TWO-POINT RESISTANCE

We first review elements of the theory of two-point resistance.

Let L represent a resistor network consisting of N nodes numbered i = 1, 2, ...,N . Let

rij = rji be the resistance of the resistor connecting nodes i and j, hence, the conductance

is

cij = r−1
ij = cji. (1)
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Denote the electric potential at the i-th node by Vi and the net current flowing into the

network at the i-th node by Ii. Since there exist no sinks or sources of current, we have the

constraint
N
∑

i=1

Ii = 0. (2)

The Kirchhoff law states that

N
∑

j=1
j 6=i

cij(Vi − Vj) = Ii, i = 1, 2, ...,N . (3)

Explicitly, equation (3) reads

L~V = ~I, (4)

where

L =





















c1 −c12 −c13 . . . −c1N
−c21 c2 −c23 . . . −c2N
−c31 −c32 c3 . . . −c3N
...

...
...

. . .
...

−cN1 −cN2 −cN3 . . . cN





















is the Laplacian matrix of L with

ci =
N
∑

j=1
j 6=i

cij, (5)

and ~V and ~I are N -vectors

~V =





















V1

V2

V3
...

VN





















, ~I =





















I1

I2

I3
...

IN





















.

The Laplacian matrix L is also known as the Kirchhoff matrix, or simply the tree matrix;

the latter name is derived from the fact that all cofactors of L are equal and equal to the

spanning tree generating function for L, a property we shall use in Sec. VI. Since the sum

of all rows of L is equal to zero, the matrix L is singular and has one eigenvalue λ1 = 0 with

corresponding (normalized) eigenvector ~Ψ1 =
1√
N (1, 1, ..., 1).
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To compute the resistance Rαβ between arbitrary two nodes α and β, we connect α and β

to an external battery and measure the current I going through the battery while no other

nodes are connected to external sources. Let the potentials at the two nodes be, respectively,

Vα and Vβ. Then, by Ohm’s law, the desired resistance is

Rαβ =
Vα − Vβ

I
. (6)

The computation of Rαβ is now reduced to solving Eq. (3) for Vα and Vβ with the current

given by

Ii = I(δiα − δiβ). (7)

The solution involves inverting Eq. (4) which, unfortunately, cannot be carried out since L

is singular. This difficulty is resolved in [2] by considering instead the matrix L(ǫ) = L+ ǫI,

where I is the identity matrix, with the parameter ǫ setting to zero at the end.

Let the orthonormal eigenvectors of L be ~Ψi = (ψi1, ψi2, ..., ψiN ), i = 1, 2, ...,N , with

eigenvalues λi, namely,

L~Ψi = λi~Ψi , i = 1, 2, ...N . (8)

Here, as noted earlier, we have one eigenvalue λ1 = 0. The above procedure then gives the

following expression for the two-point resistance [2],

Rαβ =
N
∑

i=2

|ψiα − ψiβ |2
λi

, (9)

where the summation is over the N − 1 nonzero eigenvalues λi, i = 2, 3, ...,N .

III. NEW FORMULATION

The formulation of the two-point resistance Eq. (9) holds in general. Due to the fact

that L is singular, however, the actual application of Eq. (9) is sometimes difficult to carry

through such as in the case of the cobweb network [4]. In this section we derive an alternate

and simpler expression for the two-point resistance suitable to networks such as the cobweb.

Under the constraint of Eq. (2), the sum of the N equations in Eq. (3) produces the

identity 0 = 0 so we actually have only N −1 independent equations in Eq. (3). This means

we can neglect one redundant equation. Without the loss of generality we choose to delete

4



the equation numbered i = 1. Furthermore, we can choose the potential at node 1 to be

V1 = 0. Then the N equations in (3) and (4) reduce to a set of N − 1 equations,

N
∑

j=1
j 6=i

cij(Vi − Vj) = Ii, i = 2, ...,N (10)

or

∆~V = ~I. (11)

Here

∆ =

















c2 −c23 . . . −c2N
−c32 c3 . . . −c3N
...

...
. . .

...

−cN2 −cN3 . . . cN

















(12)

is the (N − 1)× (N − 1) cofactor of the {1, 1}-element of the Laplacian L and

~V =

















V2

V3
...

VN

















, ~I =

















I2

I3
...

IN

















. (13)

Equation (11) can now be straightforwardly solved for ~V since ∆−1 is not singular.

Multiplying Eq. (11) from the left by ∆−1, we obtain the solution V = ∆−1I. Explicitly,

this reads

Vi =

N
∑

j=2

(∆−1)ijIj, i = 2, ..., N, (14)

where (∆−1)ij is the ijth elements of the inverse matrix ∆−1. Combining Eqs. (6) and (7)

with Eq. (14), we obtain the resistance between any two nodes α and β other than the node

1 as

Rαβ = (∆−1)αα + (∆−1)ββ − (∆−1)αβ − (∆−1)βα. (15)

Similarly, if one of the nodes, say α, is the node 1 where we have set V1 = 0, Ohm’s law

gives

R1β = (∆−1)ββ. (16)

Denote by ~Φi = (φi1, φi2, ..., φiN ) and Λi the eigenvectors and eigenvalues of ∆, namely,

∆~Φi = Λi
~Φi, i = 2, 3, ...,N . (17)
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Since ∆ is Hermitian, the eigenvectors ~Φi can be taken to be orthonormal

(~Φ∗
i , ~Φj) =

N
∑

α=1

φ∗
iα φjα = δij . (18)

Let U be the unitary matrix which diagonalizes ∆,

U†∆U = Λ,

where Λ is diagonal with elements Λi δij. The inverse of Eq. (19) is

U†∆−1U = Λ−1, (19)

where Λ−1 has elements Λ−1
i δij. It follows that we have

∆−1 = UΛ−1U†,

or, explicitly,

∆−1
ij =

N
∑

k=2

Uik U
∗
jk

Λk
=

N
∑

k=2

φki φ
∗
kj

Λk
. (20)

Substituting Eq. (20) into Eq. (15) we obtain the expression

Rαβ =
N
∑

k=2

|φkα − φkβ|2
Λk

. (21)

Similarly from Eq. (16), we have

R1β =
N
∑

k=2

|φkβ|2
Λk

. (22)

Note the similarity between Eqs. (21) and (9) in appearance. However, Eq. (21) can be

advantageous since it expresses the resistance Rαβ through the eigenvectors and eigenvalues

of the cofactor matrix ∆ which is not singular, and the summation does not require the

singling out of a zero eigenvalue term. The two expressions (21) and (9) are different in

substance.

IV. THE COBWEB RESISTOR NETWORK

The cobweb lattice Lcob is anM×N rectangular lattice with periodic boundary condition

in one direction and nodes on one of the two boundaries in the other direction connected

6
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r 

FIG. 1: M ×N cobweb network with M=3 and N=8. Bonds in spokes and circular directions are

resistors s and r. The center is denoted by O and A denotes a point on the boundary.

to an external common node. Therefore there is a total of MN + 1 nodes. The example of

an M = 3, N = 8 cobweb with resistors s and r in the two directions is shown in Fig. 1.

Topologically Lcob is of the form of a wheel consisting of N spokes and M concentrate circles.

There has been considerable recent interest in studying the resistance in a cobweb network

(for a summary of related works, see [4]). But there has been no generally valid exact result.

To compute resistances on the cobweb network, we make use of the formulation given in the

preceeding section, and choose the center node O to be the node 1 in the cobweb Laplacian

Lcob. This leads us to consider the (MN) × (MN) cofactor of the {1, 1}-element of Lcob,

namely,

∆MN = r−1L
per
N ⊗ IM + s−1IN ⊗ L

(DN)
M , (23)

where L
per
N can be thought of as the Laplacian of a 1D lattice with periodic boundary

conditions,

L
per
N =





















2 −1 0 . . . 0 0 −1

−1 2 −1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −1 2 −1

−1 0 0 . . . 0 −1 2





















,
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and L
(DN)
M the Laplacian of a 1D lattice with Dirichlet-Neumann boundary conditions,

L
(DN)
M =





















2 −1 0 . . . 0 0 0

−1 2 −1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −1 2 −1

0 0 0 . . . 0 −1 1





















Here, IM and IN are identity matrices.

The eigenvalues and eigenvectors of Lper
N and L

(DN)
M are known to be, respectively,

fn(x) =
√

1/N exp(2 θn x),

Λn = 2− 2 cos(2 θn), n = 0, 1, ..., N − 1,

and

fm(y) =
2√

2M + 1
sin(2ϕm) ,

Λm = 2− 2 cos(2ϕm), m = 0, 1, ...,M − 1, (24)

where

θn =
nπ

N
, ϕm =

(m+ 1
2
)π

2M + 1
. (25)

This leads to the following eigenvalues and eigenvectors for the cofactor matrix ∆MN ,

Λm,n = 2r−1(1− cos 2θn) + 2s−1(1− cos 2ϕm),

φ(m,n);(x,y) =
2

√

N(2M + 1)
exp (2ixθn) sin (2yϕm). (26)

Therefore using Eq. (21), the resistance Rcob(r1, r2) between two nodes at r1 = {x1, y1} and

r2 = {x2, y2}, when both not the center O, is

Rcob(r1, r2) =

M−1
∑

m=0

N−1
∑

n=0

∣

∣φ(m,n);(x1,y1) − φ(m,n);(x2,y2)

∣

∣

2

Λm,n

=
2r

N(2M + 1)

M−1
∑

m=0

N−1
∑

n=0

S2
1 + S2

2 − 2S1S2 cos[2(x1 − x2)θn]

(1− cos 2θn) + h(1− cos 2ϕm)
(27)

where

h = r/s, S1 = sin (2y1ϕm) , S2 = sin (2y2ϕm) .

8



Introduce Λm = Λ(ϕm) by writing

1 + h(1− cosϕm) = cosh 2Λm

or, equivalently,

sinhΛm =
√
h sinϕm . (28)

We can then carry out the summation over n in (27) by using the summation identities [5]

1

N

N−1
∑

n=0

cos(2 ℓ θn)

cosh 2Λ− cos 2θn
=

cosh[(N − 2 ℓ)Λ)]

sinh(2Λ) sinh(NΛ)
, with ℓ = 0, |x1 − x2| . (29)

to obtain

Rcob(r1, r2) =
2r

2M + 1

M−1
∑

m=0

S2
1 + S2

2 − 2S1S2 cosh
[

2|x1 − x2|Λm

]

sinh(2Λm)
coth(N Λm)

+
2r

2M + 1

M−1
∑

m=0

2S1S2 sinh
[

2|x1 − x2|Λm

]

sinh(2Λm)
. (30)

In the special case of x1 = x2 = x, i.e., two nodes in the same y column at y1 and y2, Eq.

(30) reduces to

Rcob({x, y1}, {x, y2}) =
2r

2M + 1

M−1
∑

m=0

coth(NΛm)

sinh(2Λm)

[

sin(2y1ϕm)− sin(2y2ϕm)
]2
, (31)

and in the special case of y1 = y2 = y, i.e., two nodes in the same x row at x1 and x2, Eq.

(30) reduces to

Rcob({x1, y}, {x2, y}) =
8r

2M + 1

M−1
∑

m=0

sinh
[

|x1 − x2|Λm

]

sinh
[(

N − |x1 − x2|
)

Λm

]

sinh(2Λm) sinh(NΛm)
sin2(2yϕm).

(32)

Note that the result (31) is independent of the position x as it should.

If one of the two nodes is the center O of the cobweb and the other node at P = {x, y},
then we use Eq. (22) and obtain the resistance

Rcob(O,P ) =

M−1
∑

m=0

N−1
∑

n=0

|φ(m,n);(x,y)|2
Λm,n

=
2r

N(2M + 1)

M−1
∑

m=0

N−1
∑

n=0

sin2(2yϕm)

(1− cos 2θn) + h(1− cos 2ϕm)

=
2r

2M + 1

M−1
∑

m=0

coth(N Λm)

sinh(2Λm)
sin2(2 y ϕm), y = 1, 2, ...,M. (33)

9



Note that the result (33) is independent of the position x as it should.

In the special case of the resistance between the center O and a point A = {x,N} on the

outer boundary of the cobweb, we use y =M and obtain from (33)

Rcob(O,A) =
2r

2M + 1

M−1
∑

m=0

coth(N Λm)

sinh(2Λm)
cos2 ϕm, (34)

where use has been made of the identity

sin(2M ϕm) = (−1)m cosϕm,

which is a consequence of the fact 2Mϕm + ϕm =
(

m+ 1
2

)

π.

In the limit of N → ∞, we replace coth(N Λm) → 1 in (30), (31), (33) and (34), and

replace sinh
[(

N − |x1 − x2|
)

Λm

]

/ sinh(NΛm) → e−|x1−x2|Λm in (32).

In the limit ofM → ∞, we convert the summations in (30) - (34) into integrals by making

use of the replacement

1

2M + 1

M−1
∑

m=0

F (ϕm) →
1

π

∫ π/2

0

F (ϕ) dϕ,

which is an identity valid for any function F (ϕm).

Equations (30) - (34) are our main results for the cobweb resistor network.

V. PROOF OF THE TZY CONJECTURE

In this section we prove a recent conjecture on Rcob(O,A) due to Tan, Zhou and Yang

[4], the TZY conjecture. The TZY conjecture was also cited in [6] in an analysis of the 4×N
cobweb network.

Using previous known results forM = 1, 2 and algebraic results forM = 3 obtained after

elaborate algebraic calculations, Tan, Zhou and Yang [4] conjectured that the resistance

between the center node O and a node A on the boundary of an M ×N cobweb is

Rcob(O,A) = r
M−1
∑

m=0

2 + pm
2M + 1

· coth(N ln
√
Tm)

Tm − T−1
m

(TZY conjecture) (35)

where

pm = 2 cos(2ϕm),

Tm = 1 + h− h pm
2

+

√

(

1 + h− hpm
2

)2

− 1 .

10



Here ϕm = (m+ 1
2
)π/(2M + 1) as defined in (25), and the summation in (35) is taken over

m = 0, 1, ...,M − 1 (as versus m = 1, 2, ...,M in [4]).

Now, we have the identities

cosh−1 z = ln(z +
√
z2 − 1)

cosh−1(1 + h− h cos 2z) = 2 sinh−1(
√
h sin z) = 2Λ(z). (36)

It is then easy using the identities (36) to see that we have

ln
√

Tm = Λ(ϕm)

Tm − Tm
−1 = 2 sinh

[

2Λ(ϕm)
]

. (37)

Substituting (37) and 2 + pm = 4 cos2 ϕm into (35), the TZY conjecture (35) reduces to

our exact result (34).

VI. SPANNING TREE ON COBWEB NETWORK

As a byproduct of our analysis, we solve the problem of enumerating weighted spanning

trees on an M ×N cobweb network Lcob M×N.

The problem of enumerating spanning trees on a graph was first considered by Kirchhoff

[7] in his analysis of electrical networks. The enumeration of spanning trees concerns the

evaluation of the tree generating function

ZSp
cob (M×N)(x, y) =

∑

T

xnxyny (38)

where we assign weights x and y, respectively, to edges in the spokes and circle directions,

and the summation is taken over all spanning tree configurations T on Lcob (M×N) with nx

and ny edges in the respective directions. Setting x = y = 1 we obtain

ZSp
cob (M×N)(1, 1) = the number of spanning trees on cobweb network. (39)

It is well-known [8–10] that the spanning tree generating function is given by the de-

terminant of the cofactor of any element of the Laplacian matrix of the network. We can

therefore evaluate ∆MN given in (23) with r−1 = x, s−1 = y. This gives

ZSp
cob (M×N)(x, y) = det |∆MN |

=

M−1
∏

m=0

N−1
∏

n=0

Λm,n(x, y), (40)

11



where Λm,n(x, y) is given by Eq. (26) with r−1 = x and s−1 = y. Thus, we obtain the closed

form expression for the spanning tree generating function

ZSp
cob (M×N)(x, y) =

M−1
∏

m=0

N−1
∏

n=0

[

2x

(

1− cos
2πn

N

)

+ 2y

(

1− cos
π(2m+ 1

2M + 1

)]

=
M−1
∏

m=0

N−1
∏

n=0

4

[

x sin2 πn

N
+ y sin2 π(m+ 1

2
)

2M + 1

]

. (41)

In comparison, the spanning tree generating function for an M × N cylindrical lattice

periodic in the N or x direction computed by Tzeng and Wu [10] is

ZSp
cyl M×N(x, y) =

1

MN

M−1
∏

m=0

N−1
∏

n=0
(m,n) 6=(0,0)

[

2x

(

1− cos
2nπ

N

)

+ 2y
(

1− cos
mπ

M

)

]

. (42)

The expression (42) can be transformed to

ZSp
cyl M×N(x, y) = NxN−1yM−1

M−1
∏

m=1

N−1
∏

n=1

4
[

x sin2 πn

N
+ y sin2 πm

2M

]

(43)

by using the identities

N−1
∏

n=1

4x sin2 πn

N
= N2xN−1,

M−1
∏

m−1

4y sin2 πm

2M
=M yM−1.

The expression (43) can now be compared to (41) for the M ×N cobweb. Particularly, for

M = 3, N = 8, we obtain for the 3× 8 cobweb the number

ZSp
cob (3×8)(1, 1) = 167 999 155 129,

and for the 3× 8 cylinder the number

ZSp
cyl (3×8)(1, 1) = 1 633 023 000.

The addition of one center node to a 3× 8 cylinder increases the number of spanning trees

by more than 100 times!

Finally, since both the cobweb and cylindrical lattices are the rectangular lattice with

different boundary conditions which do not affect the bulk limit, they have the same growth

constant, or spanning tree constant as given in [11, 12],

z = lim
M,N→∞

(MN)−1 lnZ(M×N)(1, 1)

=
4

π
(1− 3−2 + 5−2 − 7−2 + · · · ) = 1.166 243 6 . . . .
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VII. SUMMARY AND DISCUSSIONS

We have re-visited the problem of the evaluation of two-point resistances in a resistor

network L considered in [2], and re-formulated the evaluation in terms of the eigenvalues

and eigenfunctions of a cofactor of the Laplacian of L. The new formulation is applied to the

cobweb resistor network, a cylindrical lattice with sites on one cylinder boundary connected

to an external common center site O as shown in Fig. 1, which has heretofore eluded exact

analysis. Our analysis leads to exact expressions (30), (33) and (34), respectively, for the

resistance between arbitrary two nodes on the cylinder, between the center O and any other

point P on the cylinder, and between the center O and a point A on the open cylinder

boundary. Particularly, the result (34) trivially verifies a conjecture by Tan, Zhou and Yang

[4]. We also obtain the generating function (41) of spanning trees on the cobweb lattice.

Finally, we remark that our results on cobweb resistor networks also apply to cobweb

capacitance networks [6] such as the one shown in FIG. 1 with capacitances C and C0 in

place of r and s. Our analysis goes through with the replacement of r, s by 1/C, 1/C0,

respectively.
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