175 research outputs found

    Fluctuation Pressure of a Stack of Membranes

    Full text link
    We calculate the universal pressure constants of a stack of N membranes between walls by strong-coupling theory. The results are in very good agreement with values from Monte-Carlo simulations.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html Latest update of paper also at http://www.physik.fu-berlin.de/~kleinert/31

    Vibrational dynamics of rutile-type GeO2 from micro-Raman spectroscopy experiments and first-principles calculations

    Get PDF
    The vibrational dynamics of germanium dioxide in the rutile structure has been investigated by using polarized micro-Raman scattering spectroscopy coupled with first-principles calculations. Raman spectra were carried out in backscattering geometry at room temperature from micro-crystalline samples either unoriented or oriented by means of a micromanipulator, which enabled successful detection and identification of all the Raman active modes expected on the basis of the group theory. In particular, the Eg mode, incorrectly assigned or not detected in the literature, has been definitively observed by us and unambiguously identified at 525 cm 12 1 under excitation by certain laser lines, thus revealing an unusual resonance phenomenon. First principles calculations within the framework of the density functional theory allow quantifying both wave number and intensity of the Raman vibrational spectra. The excellent agreement between calculated and experimental data corroborates the reliability of our findings

    Vibrational dynamics of rutile-type GeO2 from micro-Raman spectroscopy experiments and first-principles calculations

    Get PDF
    The vibrational dynamics of germanium dioxide in the rutile structure has been investigated by using polarized micro-Raman scattering spectroscopy coupled with first-principles calculations. Raman spectra were carried out in backscattering geometry at room temperature from micro-crystalline samples either unoriented or oriented by means of a micromanipulator, which enabled successful detection and identification of all the Raman active modes expected on the basis of the group theory. In particular, the Eg mode, incorrectly assigned or not detected in the literature, has been definitively observed by us and unambiguously identified at 525 cm − 1 under excitation by certain laser lines, thus revealing an unusual resonance phenomenon. First principles calculations within the framework of the density functional theory allow quantifying both wave number and intensity of the Raman vibrational spectra. The excellent agreement between calculated and experimental data corroborates the reliability of our findings

    Scaling Exponents in the Incommensurate Phase of the Sine-Gordon and U(1) Thirring Models

    Full text link
    In this paper we study the critical exponents of the quantum sine-Gordon and U(1) Thirring models in the incommensurate phase. This phase appears when the chemical potential hh exceeds a critical value and is characterized by a finite density of solitons. The low-energy sector of this phase is critical and is described by the Gaussian model (Tomonaga-Luttinger liquid) with the compactification radius dependent on the soliton density and the sine-Gordon model coupling constant β\beta. For a fixed value of β\beta, we find that the Luttinger parameter KK is equal to 1/2 at the commensurate-incommensurate transition point and approaches the asymptotic value β2/8π\beta^2/8\pi away from it. We describe a possible phase diagram of the model consisting of an array of weakly coupled chains. The possible phases are Fermi liquid, Spin Density Wave, Spin-Peierls and Wigner crystal.Comment: 10pages; Improved version; Submitted to Physical Review

    Arsenite sorption and co-precipitation with calcite

    Get PDF
    Sorption of As(III) by calcite was investigated as a function of As(III) concentration, time and pH. The sorption isotherm, i.e. the log As(III) vs. log [As(OH)3 degrees / Assat] plot is S-shaped and has been modelled on an extended version of the surface precipitation model. At low concentrations, As(OH)3 degrees is adsorbed by complexation to surface Ca surface sites, as previously described by the X-ray standing wave technique. The inflexion point of the isotherm, where As(OH)3 degrees is limited by the amount of surface sites (ST), yields 6 sites nm-2 in good agreement with crystallographic data. Beyond this value, the amount of sorbed arsenic increases linearly with solution concentration, up to the saturation of arsenic with respect to the precipitation of CaHAsO3(s). The solid solutions formed in this concentration range were examined by X-ray and neutron diffraction. The doped calcite lattice parameters increase with arsenic content while c/a ratio remains constant. Our results made on bulk calcite on the atomic displacement of As atoms along [0001] direction extend those published by Cheng et al., (1999) on calcite surface. This study provides a molecular-level explanation for why As(III) is trapped by calcite in industrial treatments.Comment: 9 page

    Vicinal Surfaces and the Calogero-Sutherland Model

    Full text link
    A miscut (vicinal) crystal surface can be regarded as an array of meandering but non-crossing steps. Interactions between the steps are shown to induce a faceting transition of the surface between a homogeneous Luttinger liquid state and a low-temperature regime consisting of local step clusters in coexistence with ideal facets. This morphological transition is governed by a hitherto neglected critical line of the well-known Calogero-Sutherland model. Its exact solution yields expressions for measurable quantities that compare favorably with recent experiments on Si surfaces.Comment: 4 pages, revtex, 2 figures (.eps

    Decay of a Jπ=36+J^{\pi}=36^+ Resonance in the 24Mg+24Mg^{24}Mg + ^{24}Mg Reaction

    No full text
    The narrow (Γ\Gamma=170 keV) and high spin (Jπ=36+J^{\pi}=36^+) resonance in the 24^{24}Mg + 24^{24}Mg reaction at ECM_{CM}= 45.7 MeV has been associated with a hyperdeformed molecular state in 48^{48}Cr. Such a description has important consequences for the resonance decay into the favored inelastic channels. Through fragment- γ\gamma coincidence measurements performed ON and OFF resonance using the PRISMA-CLARA array, we have identified the 24^{24}Mg states selectively populated: the 2+2^+ and 4+4^+ members of the ground state band

    Nature and decay of a JπJ\pi=36+36^{+} resonance in the 24^{24}Mg + 24^{24}Mg reaction

    No full text
    It has been proposed to associate the narrow (\Gamma=170 keV) and high spin (JπJ\pi=36^+) resonance in the 24Mg + 24Mg reaction at E_c.m= 45.7 MeV with a hyperdeformed molecular state in 48Cr. Such a description has important consequences for the resonance decay into the favoured inelastic channels. Through fragment- coincidence measurements performed ON and OFF resonance using the PRISMA-CLARA array, we have established that the 24Mg states selectively populated are the 2^+ and 4^+ members of the ground state band

    The Structure of Hyperalkaline Aqueous Solutions Containing High Concentrations of Gallium - a Solution X-ray Diffraction and Computational Study

    Get PDF
    Highly concentrated alkaline NaOH/Ga(OH)3 solutions with 1.18 M Ga(III)T 2.32 M and 2.4 M NaOHT 4.9 M (where the subscript T denotes total or analytical concentrations) have been prepared and investigated by solution X-ray diffraction and also by ab initio quantum chemical calculations. The data obtained are consistent with the presence of only one predominant Ga(III)-bearing species in these solutions, that is the tetrahedral hydroxo complex Ga(OH)4–. This finding is in stark contrast to that found for Al(III)-containing solutions of similar concentrations, in which, besides the monomeric complex, an oxo-bridged dimer was also found to form. From the solution X-ray diffraction measurements, the formation of the dimeric (OH)3Ga–O–Ga(OH)32– could not unambiguously be shown, however, from the comparison of experimental IR, Raman and 71Ga NMR spectra with calculated ones, its formation can be safely excluded. Moreover, higher mononuclear stepwise hydroxo complexes, like Ga(OH)63–, that have been claimed to exist by others in the literature, was not possible to experimentally detect in these solutions with any of the spectroscopic techniques used
    corecore