6 research outputs found

    The 2011 Eruption of the Recurrent Nova T Pyxidis; the Discovery, the Pre-eruption Rise, the Pre-eruption Orbital Period, and the Reason for the Long Delay

    Get PDF
    We report the discovery by M. Linnolt on JD 2455665.7931 (UT 2011 April 14.29) of the sixth eruption of the recurrent nova T Pyxidis. This discovery was made just as the initial fast rise was starting, so with fast notification and response by observers worldwide, the entire initial rise was covered (the first for any nova), and with high time resolution in three filters. The speed of the rise peaked at 9 mag/day, while the light curve is well fit over only the first two days by a model with a uniformly expanding sphere. We also report the discovery by R. Stubbings of a pre-eruption rise starting 18 days before the eruption, peaking 1.1 mag brighter than its long-time average, and then fading back towards quiescence 4 days before the eruption. This unique and mysterious behavior is only the fourth known anticipatory rise closely spaced before a nova eruption. We present 19 timings of photometric minima from 1986 to February 2011, where the orbital period is fast increasing with P/dot{P}=313,000 yrs. From 2008-2011, T Pyx had a small change in this rate of increase, so that the orbital period at the time of eruption was 0.07622950+-0.00000008 days. This strong and steady increase of the orbital period can only come from mass transfer, for which we calculate a rate of 1.7-3.5x10^-7 Mo/yr. We report 6116 magnitudes between 1890 and 2011, for an average B=15.59+-0.01 from 1967-2011, which allows for an eruption in 2011 if the blue flux is nearly proportional to the accretion rate. The ultraviolet-optical-infrared spectral energy distribution is well fit by a power law with flux proportional to nu^1.0, although the narrow ultraviolet region has a tilt with a fit of \nu^{1/3}. We prove that most of the T Pyx light is not coming from a disk, or any superposition of blackbodies, but rather is coming from some nonthermal source.Comment: ApJ submitted, 62 pages, 8 figures; much added data, updated analysi

    Analysis of variability of TW Hya as observed by MOST and ASAS in 2009

    Get PDF
    As a continuation of our previous studies in 2007 and 2008, new photometric observations of the T Tauri star TW Hya obtained by the MOST satellite and the ASAS project over 40 days in 2009 with temporal resolution of 0.2 days are presented. A wavelet analysis of the combined MOST-ASAS data provides a rich picture of coherent, intermittent, variable-period oscillations, similarly as discovered in the 2008 data. The periods (1.3 - 10 days) and systematic period shortening on time scales of weeks can be interpreted within the model of magneto-rotationally controlled accretion processes in the inner accretion disk around the star. Within this model and depending on the assumed visibility of plasma parcels causing the oscillations, the observed shortest-period oscillation period may indicate the stellar rotation period of 1.3 or 2.6 d, synchronized with the disk at 4.5 or 7.1 solar radii, respectively.Comment: Accepted to MNRA

    An asymmetric eclipse seen toward the pre-main-sequence binary system V928 Tau

    Get PDF
    Funding: J.D.and E.E.M.gratefully acknowledge support from the Jet Propulsion Laboratory Exoplanetary Science Initiative and NASA award 17-K2GO6-0030.K2 observations of the weak-lined T Tauri binary V928 Tau A and B show the detection of a single, asymmetric eclipse, which may be due to a previously unknown substellar companion eclipsing one component of the binary with an orbital period >66 days. Over an interval of about 9 hr, one component of the binary dims by around 60%, returning to its normal brightness about 5 hr later. From modeling of the eclipse shape, we find evidence that the eclipsing companion may be surrounded by a disk or a vast ring system. The modeled disk has a radius of 0.9923 ± 0.0005 R*, with an inclination of 5678 ± 003, a tilt of 4122 ± 005, an impact parameter of −0.2506 ± 0.0002 R*, and an opacity of 1.00. The occulting disk must also move at a transverse velocity of 6.637 ± 0.002 R* day−1, which, depending on whether it orbits V928 Tau A or B, corresponds to approximately 73.53 or 69.26 km s−1. A search in ground-based archival data reveals additional dimming events, some of which suggest periodicity, but no unambiguous period associated with the eclipse observed by K2. We present a new epoch of astrometry that is used to further refine the orbit of the binary, presenting a new lower bound of 67 yr, and constraints on the possible orbital periods of the eclipsing companion. The binary is also separated by 18'' (~2250 au) from the lower-mass CFHT-BD-Tau 7, which is likely associated with V928 Tau A and B. We also present new high-dispersion optical spectroscopy that we use to characterize the unresolved stellar binary.PostprintPeer reviewe
    corecore