72 research outputs found

    Lagrangian velocity statistics of directed launch strategies in a Gulf of Mexico model

    Get PDF
    International audienceThe spatial dependence of Lagrangian displacement and velocity statistics is studied in the context of a data assimilating numerical model of the Gulf Mexico. In the active eddy region of the Western Gulf, a combination of Eulerian and Lagrangian measures are used to locate strongly hyperbolic regions of the flow. The statistics of the velocity field sampled by sets of drifters launched specifically in these hyperbolic regions are compared to those produced by randomly chosen launch sites. The results show that particle trajectories initialized in hyperbolic regions preferentially sample a broader range of Eulerian velocities than do members of ensembles of randomly launched drifters. The velocity density functions produced by the directed launches compare well with Eulerian velocity pdfs. Implications for the development of launch strategies to improve Eulerian velocity field reconstruction from drifter data are discussed

    Eddy growth and mixing in mesoscale oceanographic flows

    No full text
    International audienceWe study the relation between changes in the Eulerian topology of a two dimensional flow and the mixing of fluid particles between qualitatively different regions of the flow. In general time dependent flows, streamlines and particle paths are unrelated. However, for many mesoscale oceanographic features such as detaching rings and meandering jets, the rate at which the Euierian structures evolve is considerably slower than typical advection speeds of Lagrangian tracers. In this note we show that for two-dimensional, adiabatic fluid flows there is a direct relationship between observable changes in the topology of the Eulerian field and the rate of transport of fluid particles. We show that a certain class of flows is amenable to adiabatic or near adiabatic analysis, and, as an example, we use our results to study the chaotic mixing in the Dutkiewicz and Paldor (1994) kinematic model of the interaction of a meandering barotropic jet with a strong eddy

    Death of three Loop Current rings

    Get PDF
    The life cycle of large anticyclonic rings in the Gulf of Mexico (GOM) is widely described by pinch off from the Loop Current, migration across the Gulf and eventual spin down along the western slope. Extensive observational and modeling efforts provide a relatively consistent picture of rings pinching off from the Loop Current and of complex interaction between anticyclones and cyclones driven by bathymetry along the western and northwestern shelf. The observational record for Loop Current rings (LCRs) during the intermediate period of westward translation is less clear. A number of studies recognize distinct anomalies in LCR characteristics in deep water as the rings enter the western Gulf near 92-94W. These include abrupt changes in the geometry of observed drifter trajectories and derived eddy parameter fits as well as changes in both ring translation speeds and the estimated rate of ring decay. Such observations are consistent with intense interaction and mass exchange between the rings and other coherent mesoscale features known to be present in the western Gulf. We test the hypothesis that interactions with the ambient mesoscale field can lead to rapid loss of coherence of some LCRs well before they reach the \u27eddy graveyard\u27 in the western Gulf. We use the data-assimilating, eddy-resolving numerical GOM model described by Kantha et al. (2005) to assess the fates of readily identified LCRs Fourchon, Juggernaut, and Millenium during the period July 1998 to August 2001. Lagrangian metrics, including relative dispersion of small drifter clusters seeded in the ring cores, analysis of evolving blobs seeded in the ring cores, and finite-scale Lyapunov exponents, are used to track model ring evolution. These metrics clearly show that interactions with existing mesoscale cyclones and anticyclones caused Fourchon and Juggernaut to break up near 92W on advective time scales. In addition, Millenium also experienced an intense deformation, stirring, and mixing episode near 92W. Blob studies showed that the core fluid of Millenium was ultimately dispersed over much of the western basin. Our results show that some LCRs may break up through interactions with existing western Gulf cyclones and anticyclones prior to reaching the western slope

    Reconstructing Basin-Scale Eulerian Velocity Fields From Simulated Drifter Data

    Get PDF
    A single-layer, reduced-gravity, double-gyre primitive equation model in a 2000 km x 2000 km square domain is used to test the accuracy and sensitivity of time-dependent Eulerian velocity fields reconstructed from numerically generated drifter trajectories and climatology. The goal is to determine how much Lagrangian data is needed to capture the Eulerian velocity field within a specified accuracy. The Eulerian fields are found by projecting, on an analytic set of divergence-free basis functions, drifter data launched in the active western half of the basin supplemented by climatology in the eastern domain. The time-dependent coefficients are evaluated by least squares minimization and the reconstructed fields are compared to the original model output. The authors find that the accuracy of the reconstructed fields depends critically on the spatial coverage of the drifter observations. With good spatial coverage, the technique allows accurate Eulerian reconstructions with under 200 drifters deployed in the 1000 km x 1400 km energetic western region. The base reconstruction error, achieved with full observation of the velocity field, ranges from 5% (with 191 basis functions) to 30% (with 65 basis functions). Specific analysis of the relation between spatial coverage and reconstruction error is presented using 180 drifters deployed in 100 different initial configurations that maximize coverage extremes. The simulated drifter data is projected on 107 basis functions for a 50-day period. The base reconstruction error of 15% is achieved when drifters occupy approximately 110 (out of 285) 70-km cells in the western region. Reconstructions from simulated mooring data located at the initial positions of representative good and poor coverage drifter deployments show the effect drifter dispersion has on data voids. The authors conclude that with appropriate coverage, drifter data could provide accurate basin-scale reconstruction of Eulerian velocity fields

    Submesoscale dispersion in the vicinity of the Deepwater Horizon spill

    Full text link
    Reliable forecasts for the dispersion of oceanic contamination are important for coastal ecosystems, society and the economy as evidenced by the Deepwater Horizon oil spill in the Gulf of Mexico in 2010 and the Fukushima nuclear plant incident in the Pacific Ocean in 2011. Accurate prediction of pollutant pathways and concentrations at the ocean surface requires understanding ocean dynamics over a broad range of spatial scales. Fundamental questions concerning the structure of the velocity field at the submesoscales (100 meters to tens of kilometers, hours to days) remain unresolved due to a lack of synoptic measurements at these scales. \textcolor{black} {Using high-frequency position data provided by the near-simultaneous release of hundreds of accurately tracked surface drifters, we study the structure of submesoscale surface velocity fluctuations in the Northern Gulf Mexico. Observed two-point statistics confirm the accuracy of classic turbulence scaling laws at 200m−-50km scales and clearly indicate that dispersion at the submesoscales is \textit{local}, driven predominantly by energetic submesoscale fluctuations.} The results demonstrate the feasibility and utility of deploying large clusters of drifting instruments to provide synoptic observations of spatial variability of the ocean surface velocity field. Our findings allow quantification of the submesoscale-driven dispersion missing in current operational circulation models and satellite altimeter-derived velocity fields.Comment: 9 pages, 6 figure

    Chlorophyll dispersal by eddy-eddy interactions in the Gulf of Mexico

    Get PDF
    1] A Lagrangian analysis of the transport and dispersal of plumes observed in satellite-derived ocean color images was conducted using a data-assimilating model of the Gulf of Mexico. The interaction between pervasive cyclonic and anticyclonic eddies in the Gulf generated advective paths that connect remote shelf regions. These paths aligned remarkably well with the plume events recorded with the chlorophyll-a ocean color product from SeaWiFS. Two such events were studied. In one event material was transported in a thin strip between the northern wall of the Loop Current and an adjacent cyclone, connecting the eastern Campheche shelf (off the Yucatan Peninsula) and South Florida shelves. The other event began off the Louisiana shelf break as a small plume traced by chlorophyll and then developed into a long and thin feature which meandered to the shelf break off the northern Yucatan Peninsula, moving between a large anticyclone and several adjacent cyclones. These results indicate that inter-eddy advection plays a crucial role in developing the ocean color patterns observed in the satellite ocean color data

    Ocean convergence and the dispersion of flotsam

    Full text link
    Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s−1 and 0.01 ms−1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material

    Ocean convergence and the dispersion of flotsam

    Get PDF
    Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s−1 and 0.01 ms−1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material
    • …
    corecore