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Abstract. The spatial dependence of Lagrangian displace-
ment and velocity statistics is studied in the context of a data
assimilating numerical model of the Gulf Mexico. In the ac-
tive eddy region of the Western Gulf, a combination of Eu-
lerian and Lagrangian measures are used to locate strongly
hyperbolic regions of the flow. The statistics of the veloc-
ity field sampled by sets of drifters launched specifically in
these hyperbolic regions are compared to those produced by
randomly chosen launch sites. The results show that par-
ticle trajectories initialized in hyperbolic regions preferen-
tially sample a broader range of Eulerian velocities than do
members of ensembles of randomly launched drifters. The
velocity density functions produced by the directed launches
compare well with Eulerian velocity pdfs. Implications for
the development of launch strategies to improve Eulerian ve-
locity field reconstruction from drifter data are discussed.

1 Introduction

The goal of this work is to examine how Lagrangian velocity
statistics depend on initial launch position in the context of a
realistic ocean model. Given the importance of Lagrangian-
based oceanic observations, questions concerning the dis-
tributions of velocities sampled along drifter and float tra-
jectories have direct bearing on both the design of optimal
Lagrangian observing systems and the fidelity of Eulerian
fields reconstructed from such data using objective mapping
techniques (Eremeev et al., 1992; Toner et al., 2001b; Poje
et al., 2002) or generated through data assimilative models
(Kamachi and O’Brien, 1995; Ishikawa et al., 1996; Molcard
et al., 2003).

The long time distributions and spectra of Lagrangian ve-
locity statistics derived from direct oceanic observations and
large-scale numerical models have been the subject of a num-
ber of recent studies (Rupolo et al., 1996; Bracco et al., 2000;
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Garraffo et al., 2001). In agreement with observations and
analysis of comparatively simple, two-dimensional turbu-
lence models, the presence of persistent energetic structures
in oceanic flow fields leads to regimes of anomalous particle
dispersion and highly non-Gaussian velocity distributions in
the Lagrangian frame (see, for exampleProvenzale, 1999,
and references therein).

Structure-dominated flow fields are typically characterized
by a distinct separation between slow Eulerian and fast La-
grangian velocity auto-correlation time-scales (Rupolo et al.,
1996; Hua et al., 1998; Poje et al., 1999) leading to so-called
Lagrangian chaosin the particle dynamics. Given the dispar-
ity of time-scales in the Eulerian and Lagrangian frames, the
material boundaries of Lagrangian coherent structures can be
identified in terms of stable (in-flowing) and unstable (out-
flowing) manifolds associated with finite time hyperbolic tra-
jectories (Haller and Poje, 1998). These boundary curves
provide a precise partition of the flow into regions of differ-
ent dynamic behaviour.

In this work we investigate how well drifters sample the
known Eulerian velocity distribution based on their launch
location for relatively short, weekly time scales of interest
for data assimilation and ocean now-casting purposes. The
goal is to quantify this sampling based on the proximity of
the launch positions to material boundaries of Lagrangian
coherent structures in the flow. To this end, we study two
dimensional velocity fields produced by a realistic, data as-
similating model of the Gulf of Mexico. In particular, we
focus on the eddy structure in the western region of the Gulf.

2 Circulation in the Gulf

The Gulf of Mexico is an ideal numerical laboratory be-
cause of its relatively small size and semi-enclosed nature.
At any time, between 23–28 Sverdrups of sub-tropical wa-
ter from the Caribbean enter the Gulf through the Yucatan
Strait (see Fig.1), intrude into the Gulf as the Loop Cur-
rent, and then exit through the Straits of Florida to become
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Fig. 1. Contours of the model SSH field at the beginning and end of the deployment period. Grey and black

contours indicate positive and negative SSH anomalies (taken from rest) respectively. The region of interest

for the study is shown in the western Gulf.
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Fig. 1. Contours of the model SSH field at the beginning and end of the deployment period. Grey and black

contours indicate positive and negative SSH anomalies (taken from rest) respectively. The region of interest

for the study is shown in the western Gulf.
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(b)

Fig. 1. Contours of the model SSH field at the beginning and end
of the deployment period. Grey and black contours indicate pos-
itive and negative SSH anomalies (taken from rest) respectively.
The region of interest for the study is shown in the western Gulf.
(a) 18 October,(b) 17 November.

the Florida Current and eventually the Gulf Stream. Episod-
ically, the Loop Current sheds highly energetic anticyclonic
rings which migrate westward. The entire Gulf is thus, driven
by the variability associated with the Loop Current and its
rings. The currents in the Loop Current and the Loop Cur-
rent Eddies can exceed 4 knots (2 m/s). Associated with the
Loop Current rings are smaller, but intense, cyclones with
swirl velocities as large as 0.5 m/s. Thermal signatures of
both the rings and cyclones are apparent at 900 m (Lewis and
Kirwan, 1985).

To study the Lagrangian dynamics in the Gulf region, we
use velocity fields produced by a state-of-the-art primitive
equation model, CUPOM, developed at the University of

Colourado (Kantha et al., 1999). The model is a variant of the
Princeton Ocean Model (Blumberg and Mellor, 1987) which
incorporates high order mixed layer and turbulence closure
schemes and assimilates remotely-sensed MCSST and alti-
metric SSH anomaly data (Lopez and Kantha, 2000). The
model evolves 24 sigma levels with horizontal resolution of
1/12 degree. Along-track TOPEX/Poseidon and ERS-2 al-
timeter data are assimilated as pseudo expendable bathyther-
mographs using an optimal interpolation based data assimi-
lation scheme. Near-real-time sea surface temperature is in-
ferred from multi-channel infrared imagery. The surface is
forced by the Navy Operational Global Atmospheric Predic-
tion System (NOGAPS) winds. Modification (Kantha and
Clayson, 1994) of the original POM mixed layer parameter-
ization (Galperin et al., 1988) improves depiction of near-
surface currents, SST, and upper layer heat content. Inflow
through the Yucatan Channel is prescribed based on clima-
tological values, while outflow through the Florida Straits
evolves with model physics.

The fidelity of the model has been tested in a number
of hind-cast scenarios with remarkably good results.Toner
et al. (2001a) directly compared near surface drifter trajec-
tories within a large Loop Current ring with numerical tra-
jectories from the CUPOM. Near surface drifters were also
used byKuznetsov et al.(2002) in conjunction with La-
grangian boundaries of coherent features in the model to ver-
ify complicated interactions of the Loop Current and adja-
cent cyclones and anti-cyclones. Accurate representations
of the relative positions of cyclones and anti-cyclones was
also demonstrated byToner et al.(2003) who also used La-
grangian boundaries obtained from model currents to iden-
tify inter-eddy channels observed by remotely sensed ocean
colour data (SeaWiFS) as they occurred.

Since we are concerned with inhomogeneities introduced
by the presence of interacting cyclones and anti-cyclones, we
concentrate our analysis on the eddy field in the Western Gulf
away from the direct influence of the dominant Loop Current
(see Fig.1). The flow in this deep water region is dominated
by the evolution of a distinct number long-lived, large-scale
(O(100 km)) eddies that evolve on relatively long (weekly-
monthly) time scales.

Particle trajectories in this study are found by integrating

dx

dt
= u(x, y, t)

dy

dt
= v(x, y, t) (1)

where(u, v) are the zonal and meridional velocity compo-
nents given by the model at 50 m. This depth is representa-
tive of the near surface flow and is a typical drifter drogue
depth (Toner et al., 2001a; Kuznetsov et al., 2002). Trajec-
tory integration is performed with the LSODA routine from
the public domain library ODEPACK using bicubic spatial
and linear temporal interpolation of the gridded daily model
velocities.
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2.1 Time scales

That the dynamics of Lagrangian tracers is dominated by en-
ergetic coherent features in the Eulerian eddy field can be
seen by comparing the velocity auto-correlation time-scales
for the Lagrangian and Eulerian fields. To test disparity be-
tween the Eulerian and Lagrangian time scales, we calculate
the Eulerian velocity correlations directly from the model
data and the Lagrangian velocity correlations from a subset
of 15 614 particle trajectories initialized at model grid points
on t0= 3 October 1998 and integrated for 45 days.

The velocity auto-correlation functions defined by

RLag(t; t0) = 〈v(t0, x0) · v(t0 + t, x0)〉
/

〈|v(t0, x0)|
2
〉

and

REul(t; t0) = u(x, t0) · u(x, t0 + t)
/

|u(x, t0)|
2 (2)

are shown in Fig.2a. Here the Lagrangian velocity along a
trajectory, as a function of the initial positionx0, is denoted
by v(t, x0), while the Eulerian velocity field is denoted by
u(x, t). The Lagrangian average,〈(· · · )〉, is taken over all
trajectories (14 617) that do not leave the Gulf during the
integration. The Eulerian average,(· · · ), is taken over the
(fixed) spatial domain corresponding to the initial conditions
(x0) used in the Lagrangian average. Figure2b shows the
resulting velocity autocorrelation times given by

TLag(t; t0) =

∫ to+t∞

t0

RLag(t; t0)dt

and

TEul(t; t0) =

∫ to+t∞

t0

REul(t; t0)dt . (3)

wheret∞=45 days.
Clearly, the Lagrangian time scale,TLag ≈ 2.2 days is

considerably shorter than the corresponding Eulerian mea-
sure, which did not converge during the time interval of the
computation. The difference between the two time scales is
most simply explained by the presence of robust coherent
vortex-structures that evolve relatively slowly in the Eule-
rian frame while rapidly stirring fluid particles. These con-
ditions are fairly typical of meso-scale ocean flows contain-
ing isolated and energetic Eulerian structures and point to
the existence of identifiable hyperbolic trajectories in the La-
grangian frame with attending Lagrangian coherent structure
boundaries. This disparity of time-scales is also indicative
of Lagrangian motion where small-scale advective exchange
within and between eddies is confined to long thin filaments
as defined by adiabatic theory (see, for example,Lebovitz
and Neishtadt, 1994).

2.2 Eulerian and Lagrangian partitions

The coherent vortex features seen in Fig.1 act as traps for
particle motion and thus, strongly affect the distribution of

0 5 10 15 20 25 30 35 40 45
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

R
La

g  ,
 R   E

ul

Time (days)

(a) Autocorrelation

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Time (days)

T
La

g ,T
E

ul

(b) Timescales

Fig. 2. Eulerian and Lagrangian velocity autocorrelation functions and time-scales for the model, computed
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interest.
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Fig. 2. Eulerian and Lagrangian velocity autocorrelation functions
and time-scales for the model, computed on the portion of the model
grid for which trajectories do not escape from the Gulf during the
45 day calculation period. This excludes the Loop Current and some
adjacent regions, but contains the region of interest.

Lagrangian velocities sampled by different trajectories. Un-
derstanding the extent of particle trapping by eddy structures
and the amount of particle exchange among features with dif-
ferent velocity signatures is crucial to understanding overall
Lagrangian velocity sampling.

Partition of a complex flow field by identifying coherent
features can be accomplished in both the Eulerian and La-
grangian frames. A relatively straightforward Eulerian sep-
aration based on the instantaneous structure of the velocity
gradient tensor was proposed byOkubo (1970) and Weiss
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(a) Oct. 29

(b) Nov. 11

Fig. 3. Eulerian, Okubo-Weiss, partition of the flow for two days during the study. Greyscale regions

indicate positive Q with the darkest shade representing values that exceed 1.4×10−10 s−2 (1 day−2). Su-

perimposed are the model SSH contours at 7.5 cm intervals (yellow and green indicate positive and negative

SSH anomalies respectively) and the in-flowing (blue) and out-flowing (red) material curves associated with

the hyperbolic trajectory of interest. These material curves have been truncated to show the evolution of a

small segment that lied across the hyperbolic trajectory four days before (out-flowing) and four days after

(in-flowing) the indicated dates. Eigenvectors are indicated by the arrows emanating from the hyperbolic

trajectory.
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Fig. 3. Eulerian, Okubo-Weiss, partition of the flow for
two days during the study. Greyscale regions indicate posi-
tive Q with the darkest shade representing values that exceed
1.4×10−10 s−2 (1 day−2). Superimposed are the model SSH con-
tours at 7.5 cm intervals (yellow and green indicate positive and
negative SSH anomalies respectively) and the in-flowing (blue) and
out-flowing (red) material curves associated with the hyperbolic tra-
jectory of interest. These material curves have been truncated to
show the evolution of a small segment that lied across the hyper-
bolic trajectory four days before (out-flowing) and four days after
(in-flowing) the indicated dates. Eigenvectors are indicated by the
arrows emanating from the hyperbolic trajectory.

(1991) (see alsoHaller, 2001; Lapeyre et al., 1999). The
Okubo-Weisscriterion compares the square of the local strain
rate,S, to the vorticity,ω, via the quantity

Q(x, y, t) = S2
− ω2

= −det(∇u) . (4)

While only exact for particle trajectories in the limit of
frozen, time independent, velocity fields,Q measures the
rate of local divergence of nearby trajectories in hyperbolic
regions (Q>0) and differentiates such stretching regions
dominated by the local strain from elliptic regions (Q<0)
dominated by vorticity.

The spatial distribution ofQ computed using second or-
der finite-differences of the model velocity field is shown in
grey-scale for two different times in Fig.3. Darker colours
indicate hyperbolic regimes outside strongly elliptic regions
marked in white at the eddy cores. The largest values of
Q (∼1 day−2) are concentrated in the saddle regions of the
dynamic height field between persistent like-signed vortex
pairs.

The disparity of time-scales and the presence of strong,
slowly evolving hyperbolicity in the Eulerian frame indicate
the existence of well defined finite-time hyperbolic trajecto-
ries in the full, time-dependent, Lagrangian flow. As shown
in Haller and Poje(1998), the Lagrangian hyperbolic trajec-
tories are, at any time, located in the neighborhood of per-
sistent saddle points in the corresponding frozen time Eu-
lerian streamfunction. Once such trajectories are located,
Lagrangian coherent structure boundaries (given by finite-
time analogs of the stable and unstable manifolds of the hy-
perbolic trajectory) can be found by straddling techniques
(Miller et al., 1997). Truncated segments of these bound-
ing material curves are shown for one hyperbolic trajectory
in Fig. 3 along with the eigenvectors of the deformation rate
evaluated at the frozen time Eulerian saddle point. The man-
ifold segments in each image shows the evolution of small
(∼30 km) material curves that straddle the hyperbolic trajec-
tory four days before (out-flowing) or after (in-flowing) the
indicated dates. Stretching and compression rates based on
the length of these curves show sustained values of about
0.6 day−1. This value is somewhat smaller than the eigen-
value magnitudes at the hyperbolic trajectory (∼1 day−1) but
more representative of oceanic drifters.

Unlike the Okubo-Weisspartition, finite-time stable and
unstable manifolds of hyperbolic particle trajectories are in-
variant under the Lagrangian flow and provide an exact par-
tition of fluid particle dynamics. Starting with the work of
Aref (1984); Rom-Kedar et al.(1990) and MacKay et al.
(1984) in strictly period velocity fields, the determination of
manifold geometry has shed light on particle fluxes and stir-
ring in increasingly complex oceanic flows (Ridderinkkhof
and Loder, 1994; Poje and Haller, 1999; Coulliette and Wig-
gins, 2000; Miller et al., 2002; Kuznetsov et al., 2002). In the
next two sections, connections between the geometry of La-
grangian coherent structure boundaries and distributions of
particle dispersion and velocity statistics are examined.

3 Dispersion statistics

Elhmaidi et al.(1993) used the Okubo-Weiss partition to
condition particle dispersion statistics in barotropic turbu-
lent flow. Single particle dispersion statistics at intermedi-
ate times are strongly influenced by initial conditions with
those launched from elliptic regions obeying different scal-
ing laws than those launched in strain dominated regions.
The connection between Lagrangian coherent features and
two-particle dispersion statistics is even stronger. Given the
near exponential stretching of line elements straddling the
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(a) Positive Dispersion (b) Negative Dispersion

(c) Oct. 29 (d) Nov. 11

Fig. 4. Density and spatial distributions of normalized two particle dispersion computed for τ = five days

from trajectories initialized on the model grid. The solid line shows log-normal distribution with the same

mean and variance as the data. The spatial distributions shown in (c) and (d) show positive dispersion

in blue and negative dispersion in red, with the maximum and minimum values approximately the same

as indicated by the histograms (see Table 1). Superimposed on these images in dotted lines are the same

material curve segments described in the caption of Figure 3.

21

Fig. 4. Density and spatial distributions
of normalized two particle dispersion
computed forτ=five days from trajec-
tories initialized on the model grid. The
solid line shows log-normal distribution
with the same mean and variance as the
data. The spatial distributions shown
in (c) and(d) show positive dispersion
in blue and negative dispersion in red,
with the maximum and minimum val-
ues approximately the same as indi-
cated by the histograms (see Table 1).
Superimposed on these images in dot-
ted lines are the same material curve
segments described in the caption of
Fig. 3.

stable manifold in the vicinity of a hyperbolic trajectory,
Bowman(1999) proposed plotting thefinite-strainassociated
with nearest neighbor particle separations as means of locat-
ing hyperbolic structures in complex, translating atmospheric
flows. Using this approach,Jones and Winkler(2001) de-
termined the location of hyperbolic trajectories in observed
wind data and found that the spatial structure of relative dis-
persion was a good approximation for finite-time/size Lya-
punov exponents which also have been used to visualize hy-
perbolic trajectories (Pierrehumbert, 1991; Boffetta et al.,
2001).

To determine the finite strain, trajectories are initialized
on a regular grid of initial conditions wherexi,j (t0) indicates
the initial position of thei, j particle andxi,j (t; t0) the sub-
sequent position at timet + t0. The normalized relative dis-
persion of nearest neighbor particles surrounding the point
xi+1/2,j+1/2(t0) is calculated via the quantity

212
i,jD

±

i+1/2,j+1/2 (±τ ; t0)

=‖
(
xi+1,j+1(±τ ; t0) − xi,j (±τ ; t0)

)
‖

2

+ ‖
(
xi+1,j (±τ ; t0) − xi,j+1(±τ ; t0)

)
‖

2 (5)

where1i,j is the initial separation distance between par-
ticle pairs. For integration timesτ on the order of sev-
eral Lagrangian correlation times, the fieldD±(τ ; t0) plot-
ted over the initial conditions provides information about

the Lagrangian structure of the flow. For forward in time
computations, peaks in the relative dispersion should iden-
tify segments of in-flowing manifolds associated with any
nearby hyperbolic trajectory in the flow. Adjacent trajecto-
ries straddling the in-flowing manifold and approaching the
hyperbolic region will experience near exponential separa-
tion rates along opposite legs of the associated out-flowing
manifold. Conversely, computing the relative dispersion of
trajectories advected backward in time highlights segments
of the out-flowing manifold.

Figure4 shows histograms ofD±(x, y; τ=5 days) for a
grid of approximately 14 000 initial conditions. As indicated
by the logarithmic scale in the figure, the relative dispersion
distribution is skewed from log-normal with extremely long
tails in the large separation region. Select particle pairs ex-
perience stretching orders of magnitude higher than the me-
dian value. The Lagrangian mean value of the relative dis-
persion is thus, strongly influenced by relatively few, super-
dispersive, trajectory pairs. As shown by the spatial distri-
bution of the logarithm ofD in Figs. 4c and d, these pairs
are precisely those that straddle the Lagrangian structures in
the flow. The similarity between the relative dispersion dis-
tributions in forward and backward time is a result of the
relatively long Eulerian time-scales (the advecting velocity
field is qualitatively similar on the∼30 day time-scale) and
the near 2-D incompressibility of the model velocity data
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(a) Directed launch (b) Best random launch

(c) Worst random launch (d) Quantile-quantile plot

Fig. 5. Probability density functions (a)-(c) of zonal velocity sampling and quantile-quantile plots (d) for

the directed, best, and worst random deployments. The error metric used is based on the quantile-quantile

plot of the Lagrangian verses Eulerian histograms (before mapping into PDFs). The velocities indicated on

the ordinate in (a)-(c) are the minimum, mean, and maximum values from the Eulerian sampling; the mean

of the Lagrangian velocity sampling is indicated by the vertical dotted line. See Table 1 for more details on

the statistics. In (d), the solid, dashed, and dash-doted lines represent the directed, best random, and worst

random deployments respectively; the grey line represents the plot of a “zero” error sampling.
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Fig. 5. Probability density functions(a)–(c) of zonal velocity sampling and quantile-quantile plots(d) for the directed, best, and worst
random deployments. The error metric used is based on the quantile-quantile plot of the Lagrangian verses Eulerian histograms (before
mapping into PDFs). The velocities indicated on the ordinate in(a)–(c) are the minimum, mean, and maximum values from the Eulerian
sampling; the mean of the Lagrangian velocity sampling is indicated by the vertical dotted line. See Table 1 for more details on the statistics.
In (d), the solid, dashed, and dash-doted lines represent the directed, best random, and worst random deployments respectively; the grey line
represents the plot of a “zero” error sampling.

(positive and negative eigenvalues of the local rate of strain
are nearly equal in magnitude).

A launch strategy based on locating Lagrangian hyper-
bolic trajectories is examined in the next section (see also
Poje et al., 2002).

4 Velocity statistics

On weekly time scales, sampling the Eulerian velocity distri-
bution with drifters will be strongly effected by coherent fea-
tures in the flow. Knowledge of the location of these features
can drastically improve how well the velocity distribution

sampled by the drifters mimic the true, Eulerian distribu-
tion. Hyperbolic trajectories which may be easily identified
in the Gulf of Mexico are associated with very low veloc-
ity regions, and clearly this trajectory alone will not sam-
ple the Eulerian PDF well. However, nearly every nearby
trajectory (with the exception of those on the stable mani-
fold) will exit this low velocity region rapidly (exponentially
fast in the linearized saddle dynamics). Practically speak-
ing, it will be impossible for a particle not to exit along a
branch of the out-flowing manifold due to either numerical
imprecision associated with model trajectories or small-scale
turbulence and/or wind effects in the ocean. In the context
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(a) Directed launch (b) Best random launch

(c) Worst random launch (d) Quantile-quantile plot

Fig. 6. Same as in Figure 5 except for meridional velocity.

23

Fig. 6. Same as in Fig. 5 except for meridional velocity.

of mesoscale ocean eddies, out-flowing manifolds will form
the Lagrangian boundaries of the coherent features and these
boundaries tend to pass through very high velocity regions of
the flow. Therefore, drifters launched in the vicinity of hyper-
bolic trajectories should experience both velocity extremes
inherent in the flow. How well the resulting PDF generated
from the Lagrangian velocities match the Eulerian PDF is
addressed in the next sections.

4.1 Launch strategy

The region and time span of the velocity sampling in the
Gulf of Mexico are shown in Fig. 1. A directed launch strat-
egy based on knowledge of the hyperbolic trajectory shown
in Figs. 3 and 4 is used to sample this region. To locate
and track this trajectory, a small (approximately 20 km) ma-
terial line segment was initialized on 18 October along the

out-flowing direction (as determined by the velocity gradient
and geometric orientation ofD− on that day) and integrated
forward in time until 17 November. In a similar fashion, a
material line segment was initialized on 17 November along
the in-flowing direction and integrated backward in time to
18 October. The appropriate intersection of these two curves
was tracked throughout this time period and thus, located
the hyperbolic trajectory. Segments of these manifolds are
shown in Figs. 3 and 4. Beginning on 19 October and ending
on 17 November, drifters were launched daily on either side
of this intersecting point, approximately 30 km apart, along
the out-flowing direction, as determined by the location of
the out-flowing manifold near the hyperbolic trajectory at
that time. As seen in Fig. 1, translation of the launch location
was minimal (approximately 50 km).

For comparison, 20 random locations were chosen well
off the continental shelf, in depths greater than 500 m, and
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Table 1. Statistics relating to the histograms in Figs. 4–6.

Figure Quantity mean st. dev. max min

Figure 4a log
(
D+

)
0.68 0.53 2.9 −1.2

Figure 4b log
(
D−

)
0.68 0.53 3.0 −1.0

Figure 5 uEul 0.028 0.24 0.81 −0.69

Figure 5a uLag 0.033 0.28 0.75 −0.60

Figure 5b uLag 0.043 0.21 0.69 −0.47

Figure 5c uLag 0.24 0.21 0.70 −0.59

Figure 6 vEul 0.012 0.22 0.73 −0.88

Figure 6a vLag 0.0098 0.24 0.57 −0.68

Figure 6b vLag 0.0057 0.24 0.52 −0.70

Figure 6c vLag 0.13 0.084 0.43 −0.25

drifters were launched on the same dates 30 km apart along
lines of random orientation centered at that location. In this
way, a single experiment consists of launching 58 drifters
over the 29 day period. With daily sampling of the drifter
data, this results in a maximum of 870 Lagrangian veloc-
ity observations in any single experiment. Velocity data
from drifters located outside the region of interest were not
recorded.

4.2 Velocity sampling

The “truth” used for the error metric is the distribution of
Eulerian velocities throughout the time period in the region
of interest, approximately 180 000 measurements. To deter-
mine how well the velocities sampled by different drifter
launches represent the Eulerian distribution, a quantile-
quantile comparison of the resulting Lagrangian and Eulerian
distributions is made for both meridional and zonal velocity
fields. Fifty quantiles are computed from each distribution
from which the error metric

Erroru =
1

50
650

i=1

(
ui

Lag − ui
Eul

)2
(6)

is determined. Here,ui
Lag andui

Eul are theith quantile val-
ues for the Lagrangian and Eulerian zonal velocity distribu-
tions. A similar error metricErrorv is defined for the merid-
ional velocity distributions. Figures 5 and 6 show the PDFs
and quantile-quantile plots of the zonal and meridional ve-
locity sampling from the directed launches and the random
launches with the lowest and highest errors. The grey back-
ground histogram in the sub-figures (a)–(c) is the Eulerian
PDF, and the thin solid line is a Gaussian PDF with the same
mean and variance for reference. Details of the statistics are
given in Table 1.

For both components of the velocity, the aggregate Eule-
rian distribution is relatively well represented by a Gaussian
with higher skewness seen in the meridional field. Again
for either case, the distribution of velocities sampled by the
directed launch drifters is remarkably similar to the com-
plete Eulerian distribution indicating that drifter launched in

(a) Oct. 19

(b) Nov. 2

(c) Nov. 16

Fig. 7. Spatial distribution of the drifters (∗) for the directed launch experiment shown with respect to the

in-flowing (blue) and out-flowing (red) material curves emanating from the hyperbolic trajectory of interest.

The model height contours (see Figure 3) overlay the greyscale background which shows the kinetic energy

(darkest values exceed 0.5 m2/s2) of the velocity field.
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Fig. 7. Spatial distribution of the drifters (∗) for the directed launch
experiment shown with respect to the in-flowing (blue) and out-
flowing (red) material curves emanating from the hyperbolic tra-
jectory of interest. The model height contours (see Fig. 3) overlay
the greyscale background which shows the kinetic energy (darkest
values exceed 0.5 m2/s2) of the velocity field.
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(a) Oct. 19

(b) Nov. 2

(c) Nov. 16

Fig. 8. Spatial distribution of drifters for the experiment yielding the best zonal velocity sampling. Figure

details are the same as for Figure 7.
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Fig. 8. Spatial distribution of drifters for the experiment yielding
the best zonal velocity sampling. Figure details are the same as for
Fig. 7.

(a) Oct. 19

(b) Nov. 2

(c) Nov. 16

Fig. 9. Spatial distribution of drifters for the experiment yielding the best meridional velocity sampling.

Figure details are the same as for Figure 7.
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Fig. 9. Spatial distribution of drifters for the experiment yielding
the best meridional velocity sampling. Figure details are the same
as for Fig. 7.
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(a) Zonal error

(b) Meridional error

(c) Total error

Fig. 10. The zonal, meridional, and total velocity sampling error for the 20 random launch experiments (1-

20) and the directed launch experiment (21, indicated by the asterisk). Experiments with that sampled the

zonal and meridional velocities best are indicated by a + and × respectively. The mean errors are indicated

by the solid, horizontal lines.
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Fig. 10.The zonal, meridional, and total velocity sampling error for
the 20 random launch experiments (1–20) and the directed launch
experiment (21, indicated by the asterisk). Experiments with that
sampled the zonal and meridional velocities best are indicated by a
+ and× respectively. The mean errors are indicated by the solid,
horizontal lines.

hyperbolic regions preferentially sample the complete Eule-
rian velocity space.

Launch locations of the random experiments clearly play
an important role in the quality of the velocity sampling. Fig-
ures 7–9 show the directed and best sampling deployments
for the zonal and meridional velocities. Note that the best
zonal sampling experiment is different than the best merid-
ional sampling experiment. The background of these plots
are contours of the kinetic energy to indicate high and low
velocity regions. Also, on these plots are the original man-
ifolds computed from the hyperbolic trajectory used for the
directed launch strategy.

The best zonal velocity sampling launch (see Fig. 8) is as-
sociated with the cyclone in the southwest corner of the im-
age (see Fig. 1). Indeed, this location placed drifters near
the in-flowing manifold of another hyperbolic trajectory that
forms as this cyclone splits. The in-flowing manifold of
the hyperbolic trajectory shown connects the two saddles, as
seen on 19 October (see Fig. 8a). Drifters launched in this ex-
periment are mostly entrained into this cyclone (see Figs. 8b
and c).

The best meridional velocity sampling (see Fig. 9) is
achieved with a launch that is remarkably close to the di-
rected launch site. From their initial positions in Fig. 9a, it
is clear that western branch of the out-flowing manifold will
be well-sampled. However, additional drifters become en-
trained into a small cyclone to the east of the hyperbolic tra-
jectory (see Figs. 9b and c), which the directed drifters could
not enter.

Figure 10 shows the zonal, meridional, and total sampling
error of each experiment. Notice the discrepancy between
the zonal and meridional sampling accuracies. For exam-
ple, experiments 3 and 5 sample the zonal velocity signifi-
cantly worse that the mean sampling error, yet they sample
the meridional velocities slightly less than the mean sampling
error. Experiment 16 sampled the meridional and experiment
4 the zonal velocities most accurately.

Although the directed launch drifters did not have the least
error for either the zonal or meridional velocity samplings,
the total error of this launch (0.0032) was significantly better
than any of the random launches (the next lowest error was
0.0053). Interestingly, the total error of experiments 4 and 16
were nearly identical (0.0065).

5 Conclusions

In the western Gulf of Mexico, we have examined how co-
herent features control both a derived product of the La-
grangian map, two-particle dispersion, and the sampling of
the Eulerian velocity by drifters. The dispersion statistics
clearly identify the in-flowing and out-flowing manifolds of
hyperbolic trajectories associated with the slowly evolving
mesoscale eddies in the western Gulf. Drifters launched
along the out-flowing direction of a strong hyperbolic tra-
jectory that separates two anti-cyclones in the center of the
region were shown to preferentially sample the Eulerian
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velocity distribution over similar, randomly located launch
sites. In particular, the directed launch strategy achieved the
minimum total sampling error of the combined zonal and
meridional velocities.

The conclusion to be drawn from these results is that co-
herent features such as mesoscale eddies should be taken into
account whenever drifter experiments are designed. Hyper-
bolic regions in the realistic, data assimilating model that
contain a hyperbolic trajectory were easily identified. In the
ocean, however, specific experiments that not only identify
these regions, but calculate drifter separation rates will be an
important next step.
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