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ABSTRACT

A single-layer, reduced-gravity, double-gyre primitive equation model in a 2000 km 3 2000 km square domain
is used to test the accuracy and sensitivity of time-dependent Eulerian velocity fields reconstructed from nu-
merically generated drifter trajectories and climatology. The goal is to determine how much Lagrangian data is
needed to capture the Eulerian velocity field within a specified accuracy. The Eulerian fields are found by
projecting, on an analytic set of divergence-free basis functions, drifter data launched in the active western half
of the basin supplemented by climatology in the eastern domain. The time-dependent coefficients are evaluated
by least squares minimization and the reconstructed fields are compared to the original model output. The authors
find that the accuracy of the reconstructed fields depends critically on the spatial coverage of the drifter obser-
vations. With good spatial coverage, the technique allows accurate Eulerian reconstructions with under 200
drifters deployed in the 1000 km 3 1400 km energetic western region. The base reconstruction error, achieved
with full observation of the velocity field, ranges from 5% (with 191 basis functions) to 30% (with 65 basis
functions). Specific analysis of the relation between spatial coverage and reconstruction error is presented using
180 drifters deployed in 100 different initial configurations that maximize coverage extremes. The simulated
drifter data is projected on 107 basis functions for a 50-day period. The base reconstruction error of 15% is
achieved when drifters occupy approximately 110 (out of 285) 70-km cells in the western region. Reconstructions
from simulated mooring data located at the initial positions of representative good and poor coverage drifter
deployments show the effect drifter dispersion has on data voids. The authors conclude that with appropriate
coverage, drifter data could provide accurate basin-scale reconstruction of Eulerian velocity fields.

1. Introduction

There has been an explosion in Lagrangian infor-
mation about the ocean during the past two decades
(Sombardier 1992; Sombardier and Niiler 1994). In the
Gulf of Mexico, for example, over 300 satellite-tracked
drifters were released between 1994 and 1995 in the
Louisiana–Texas shelf. In the West Florida Shelf study
even more drifters were released during 1996–97. A
comparable number of drifters were released as part of
consortium of oil companies during the 1990s in the
abyssal Gulf of Mexico and a number of analyses of
these observations have now appeared in the literature
(Lewis et al. 1989; Forristall et al. 1992; Vidal et al.
1992; Glenn and Ebbsmeyer 1993).

There are at least four reasons for the emphasis on
Lagrangian data. First, velocity data obtained by satellite
tracking of drifters are inexpensive relative to the same
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amount of data obtained from moorings and ships. Sec-
ond, drifter data are available to operational users in
real time whereas there can be considerable delay in
transmitting data from conventional sources. Third,
drifters are the only practical method for obtaining syn-
optic surface current data over regional to basin scales.
Finally, in many applications the Lagrangian informa-
tion (particle pathways, dispersion) is itself of prime
importance. For these reasons it is likely that drifter
deployments of similar and even greater numbers will
continue into this millennium in other parts of the World
Ocean.

Despite its preponderance, Lagrangian data tends to
be underutilized in nowcasting the ocean state and in
data assimilation schemes for predictive modeling.
There are a number of technical reasons for this. Unlike
data from moorings, Lagrangian velocity data are ir-
regularly spaced and tend either to bunch together or
advect out of regions of interest. In contrast, Eulerian
data are easily reconciled with numerical models.

As succinctly summarized by Davis (1985b), the
problem of mapping observations is achieved either by
least squares projection of the data onto a set of or-
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thogonal basis functions, by optimal linear interpolation,
or, as proposed by Davis, by some combination of both.
Optimal interpolation requires statistical information
about the uncertainties in both the observations and the
true field. The latter is usually not available in ocean-
ography. Owens (1991) addressed many of the issues
in developing a statistical description of the mean cir-
culation in the Atlantic from SOFAR floats.

The focus here is reconstructing daily maps of the
Eulerian velocity. So as not to prejudice the reconstruc-
tion with a priori statistical knowledge of the velocity
field, we use a least squares approach to fit geometrical
orthogonal basis functions to the simulated drifter data.
The basis functions are chosen using general charac-
teristic flow scales and knowledge of the climatological
energetics of the velocity field. Details and attributes of
this approach are discussed in the next section; here it
is noted that this spectral approach is global in that it
can be applied to the entire model domain or any subset
thereof provided some information exterior to the sub-
domain is available, such as a climatological mean.
Moreover, the basis functions have simple physical in-
terpretations that describe energetics of the flow.

The geometrical orthogonal function technique does
not provide the maximum data compression as does the
empirical orthogonal function (EOF) technique. Using
the ideas of Davis (1985a) it is possible to combine the
EOF approach with optimal estimation and provide an
objective analysis without full statistical knowledge of
the signal. Such an approach, however, is not consistent
with our approach of excluding a priori knowledge of
the flow specifics. For the purposes of this study, phys-
ical attributes are more important than data compression.

Of fundamental importance in utilizing Lagrangian
data is the sensitivity of reconstructed Eulerian veloc-
ities to the attendant characteristics of the input data.
To address this question, we conduct controlled exper-
iments with velocity fields produced by a reduced-grav-
ity, primitive equation basin model. This standard dou-
ble-gyre model on a 2000-km square domain, previously
used by Poje and Haller (1999) to study cross-stream,
Lagrangian mixing, necessarily eliminates stratification,
physical side and bottom conditions, and realistic wind
forcing, all certainly important in real oceanographic
settings. These simplifications, however, allow us to ad-
dress scale and sampling issues unambiguously. The
geometry of the double-gyre model also provides a flow
with wide variations in eddy kinetic energy density
across the domain.

In the spirit of previous work by Rao and Schwab
(1981), Eremeev et al. (1992a), and Cho et al. (1998)
we objectively reconstruct the Eulerian current fields of
this model from Lagrangian data and assess how the
accuracy of the reconstructed velocity field depends on
the spatial coverage of the drifter paths. Launch patterns
that accentuate coverage extremes are used for this pur-
pose. Only the velocity data from the drifters are used;
no effort is made to utilize trajectory information. A

comparison of reconstructed velocity fields generated
with drifter data is made with reconstructed velocity
fields generated with mooring data. The locations of the
moorings are the initial launch locations of the drifters,
so the same coverage extremes are realized.

The focus here is on the practical aspects of recon-
structing the Eulerian fields. The accuracy metric is the
kinetic energy of the vector difference between the orig-
inal model and the reconstructed velocity field. In this
analysis, the model results are considered ‘‘truth’’ and
the trajectory data are considered error free. It is hoped
this is the first step in moving toward objective drifter
deployment strategies.

The rest of the paper is organized as follows. The
next two sections summarize, respectively, the analysis
methodology and the numerical model. In section 4, the
mode selection criteria and model energetics are pre-
sented. This section introduces the measurement of error
in the reconstructed field. Section 5 examines topics
such as the number of drifters required, climatological
data sampling, deployment issues, and mooring com-
parisons are addressed. In the last section, the conclu-
sions of the study are summarized and implications are
discussed.

2. Normal mode analysis

One of the difficulties in comparing Eulerian and La-
grangian velocities is that the locations of the former
are fixed for the observation period, while the latter
provide data from constantly changing locations. One
remedy might be to interpolate the Lagrangian data onto
the Eulerian grid. An enormous variety of interpolation
schemes are available and many rely on empirical es-
timates of correlation scales. Optimal methods would
require both Eulerian and Lagrangian correlation scales,
which are not available for the World Ocean. Moreover
this approach forces all interpolator uncertainty into the
Lagrangian data. Spectral approaches are another alter-
native. As with any method they also have deficiencies;
however, for the goals of this paper they are appropriate.
We have elected to follow an approach used by Rao and
Schwab (1981) in an analysis of a current meter array
from Lake Ontario. This approach was generalized by
Eremeev et al. (1992a) to apply to a three-dimensional
incompressible velocity field. Since then it has been
used by Eremeev et al. (1992b, 1995a,b) and more re-
cently by Cho et al. (1998), Lipphardt et al. (1998,
2000), and Schulz (1999). Lipphardt et al. (1998) give
a succinct summary of the general approach applicable
to an arbitrarily shaped domain that may include both
open and closed boundaries.

The three-dimensional incompressible velocity field
is expressed in terms of two scalar potentials as

u 5 = 3 [k(2C) 1 = 3 (kF)]. (1)

Here, k is the unit vector in the vertical direction. Equa-
tion (1) generalizes the model used by Rao and Schwab



MAY 2001 1363T O N E R E T A L .

(1981) and Cho et al. (1998) to account for a nonqua-
sigeostrophic component of flow that could be present
whenever there are intense gradients such as eddy shed-
ding. This form ensures the velocity field is exactly
incompressible in three dimensions. However, this study
does not make use of vertical velocities.

Projection of the vertical component of relative vor-
ticity from (1) gives a Helmholtz equation for C with
homogeneous Dirichlet boundary conditions; C is ex-
panded using eigenfunctions, which are called Dirichlet
modes (cn). These modes represent the quasigeostrophic
component of the flow. They are solutions to

¹2cn 1 lncn 5 0, cn|boundary 5 0. (2)

From (1), the gradients of cn are expressed as

2]c ]cn nD D(u , y ) 5 , . (3)n n 1 2]y ]x

Projection of the vertical velocity component gives a
Helmholtz equation for F with homogeneous Neumann
boundary conditions. As with the Dirichlet eigenfunc-
tions F is expanded using eigenfunctions, which are
called Neumann modes (f m). They are solutions to

¹2fm 1 mmfm 5 0, (p · =fm)|boundary 5 0, (4)

where p is the outward pointing boundary normal. The
f m may be thought of as velocity potential or divergence
modes, with zero relative vorticity. From (1), the gra-
dients of f m are expressed as

]f ]fm mN N(u , y ) 5 , . (5)m m 1 2]x ]y

With arbitrarily shaped coastlines (2) and (4) are read-
ily solved numerically. Note that the homogeneous
boundary conditions ensure no flow across the bound-
aries. If the domain has open boundaries, then these
solutions must be augmented with a boundary flow so-
lution that uses known flow across the boundary. See
Lipphardt et al. (2000) for details and an application to
Monterey Bay. This latter factor is important when
studying an open subdomain. In the present case, the
domain geometry is so simple we use the analytic ei-
genfunctions (sines and cosines) rather than numerically
generated values.

Thus the Eulerian velocity fields can be represent-
ed as

N M

D Nu (x, y, t) 5 A (t)u (x, y) 1 B (t)u (x, y) (6)O Oproj n n m m
n51 m51

and
N M

D Ny (x, y, t) 5 A (t)y (x, y) 1 B (t)y (x, y). (7)O Oproj n n m m
n51 m51

The , , , and are known (sines and cosinesD N D Nu u y yn m n m

in our case), while the amplitudes An(t) and Bm(t) are
determined from observations. Specifically, if uob(xi(t),

yi(t), t) are I observations at time t, then the observation
vector of length 2I is

 u (x (t), y (t), t)ob 1 1

y (x (t), y (t), t)ob 1 1

u (x (t), y (t), t)ob 2 2 
o 5 y (x (t), y (t), t) . (8) ob 2 2

_
u (x (t), y (t), t)ob I I 
y (x (t), y (t), t)ob I I 

The unknown modal amplitudes
c 5 [A1(t), A2(t), · · · , AN(t),

B1(t), B2(t), · · · , BM(t)]T (9)
are determined as a least squares minimization of

min \Mc 2 o\ , (10)2
c

where Ml,j is a 2I 3 (N 1 M) matrix, [ ]T is the transpose
operation, and \ \2 denotes the standard quadratic scalar
norm. Details on the theory of least squares minimi-
zation can be found in any standard matrix algebra text
such as Golub and van Loan (1983). The jth index of
Ml,j refers the u (l 5 1, 3, 5, · · · , 2I 2 1) or y (l 5 2,
4, 6, · · · , 2I) component of the basis function velocity
derived from the appropriate streamfunction (j 5 1, · · · ,
N) or velocity potential (j 5 N 1 1, · · · , N 1 M)
evaluated at the location of the ith observation in (8).
The reconstructed Eulerian velocity at any time is given
by the right-hand sides of (6) and (7).

3. Numerical model
Here we use a standard, reduced-gravity primitive

equation model to provide both the base Eulerian ve-
locity field we seek to reconstruct and the numerically
generated drifter observations. Reduced-gravity, 1.5-
layer primitive equation and quasigeostrophic models
have been in use by the community for at least the last
two decades (Holland 1978; Marshall 1984), and more
recently, such models have been used to examine La-
grangian and Eulerian transport (Figueroa 1994; Figu-
eroa and Olsen 1994), multiple equilibria, and low-di-
mensional reconstructions (Jiang et al. 1995; Berloff and
Meacham 1998) as well as statistical questions involv-
ing low-frequency climate variability (McCalpin 1995;
McCalpin and Haidvogel 1996).

In advection form, the governing equations are
]h ](uh) ](yh)

1 1 5 0
]t ]x ]y

]u ]u ]u ]h
1 u 1 y 5 2g9 1 f (1 1 by)y0]t ]x ]y ]x

2 u1 n¹ u 1 F

]y ]y ]y ]h
1 u 1 y 5 2g9 2 f (1 1 by)u0]t ]x ]y ]y

2 y1 n¹ y 1 F , (11)
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FIG. 1. Contours of the mean eddy kinetic energy, [ 11 2(u 2 u)2

], for the 10-yr history of the double-gyre flow. The kinetic2(y 2 y )
energy ranges from 0 to 0.099 m2 s22 and contour lines are shown
in 0.01 m2 s22 increments. The active subdomain, D, is marked by
the dash-lined box.

where the vector F represents the imposed wind stress
given by

t 2py0uF 5 1 2rH sin L0 y

and F y 5 0. The inclusion of a Laplacian diffusion (a
simple model of subgrid-scale turbulent transport and
dissipation) allows the imposition of Dirichlet boundary
conditions on the velocity field. The height field varies
freely on the boundaries.

Equations (11) are solved by standard finite differ-
ences using the MP-DATA advection algorithm of Smo-
larkiewicz and Margolin (1993) on a C grid. The domain
is a 2000-km square; spatial resolution is 10 km and
the computation time step is 15 minutes. Full details of
the numerical procedure are given in Jones et al. (1997).
The flow parameters are chosen to coincide with those
in Poje and Haller (1999).

Figure 1 shows the average eddy kinetic energy den-
sity in the domain during the 10 years prior to the re-
construction period. The western half of the domain is
dominated by a strong free jet formed by two legs of
the western boundary current along with a number of
large-scale (100-km radius) cyclonic and anticyclonic
eddies shed intermittently by jet rollup. Outside this
active region, the flow is quiescent with fluctuations
from the short time mean dominated by small amplitude
Rossby waves.

The Eulerian fields were archived every 24 hours for
a 50-day reconstruction period beginning in the 15th
model year after spinup from rest. As detailed in Poje
and Haller (1999), during these 50 days a hyperbolic
point in the center of the domain strengthens, peaks,
and then weakens as a cold core ring detaches from the
central jet. This provides an interesting period to study

the reconstruction error because it represents the typical
topology change of the flow field during an eddy-shed-
ding event.

Our goal is to reconstruct the Eulerian velocity field
in the active, eddy-shedding region D by tracking drift-
ers launched there. Figure 2 shows the velocity field of
the model at day 1 and day 49 of the reconstruction
period. During this period, one eddy is shed from the
central jet and a previously shed eddy impacts the west-
ern boundary.

4. Mode selection

The rectangular geometry of the domain affords an
analytic representation of the basis functions. The so-
lutions of (2) and (4) take the form

n2 n yx21/2c (x, y) 5 (n · n) sin px sin py (12)n 1 2 1 2p l lx y

and

n2 n yx21/2f (x, y) 5 (n · n) cos px cos py , (13)n 1 2 1 2p l lx y

where n 5 (nx/lx, ny/ly). The mode-number-dependent
scaling ensures that the square of the amplitude corre-
sponds to the modal energy content.

The methodology of the normal mode analysis allows
a 2D divergence-free approximation to the flow by se-
lecting only streamfunction modes. Energy in the ve-
locity potential modes gives the spatial structure of the
2D divergent flow, which in the present model estimates
the nonquasigeostrophic component. Of course 2D di-
vergence-free flow can have nonquasigeostrophic com-
ponents as well. Viscous effects such as wind stress and
turbulent stresses will produce a nonquasigeostrophic
response.

The energetic scales of the double-gyre flow are
bounded below by either the Rossby radius of defor-
mation, ld 5 (1 1 by) gh/ f, or the viscous MunkÏ
length, lm 5 n/U. Since the basis functions do not satisfy
the no-slip boundary conditions of the flow, the pro-
jection is restricted to interior grid points only. Estimates
of the small-scale features are therefore based only on
the Rossby radius, 38–52 km. Such a scaling implies
that the highest mode number, nx or ny, of the basis
functions is lx/(2Ld) 5 ly/(2Ld) 5 28. Thus, flow struc-
tures with scales as small as a Rossby diameter are
resolved.

Based on the spatial scale only, a divergence-free
approximation will entail projection on 784 modes. The
inclusion of the divergent, potential modes doubles this
number. Such a large number of modes presents two
problems. First, we do not expect to have a sufficient
number of observations (drifters) to adequately resolve
over 1500 degrees of freedom at any time. Second, the
computational effort required to minimize large least
squares problems is prohibitive.
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FIG. 2. Model velocity fields at the beginning and end of the test
reconstruction period.

Selecting an appropriate subset of modes for the pro-
jection initially requires some knowledge of the Eulerian
field. As a first step toward identifying the most ener-
getic basis functions, we project the Eulerian data ob-

tained from 40 statistically independent time slices of
the model flow taken once every 90 days for 10 years
prior to the reconstruction period. This approach mimics
the situation where the specifics of the Eulerian flow
field are unknown during the reconstruction period, but
some historical record of general flow characteristics
may be obtained. The imperfect knowledge of the Eu-
lerian field is further enhanced by using only one-fourth
of the model grid points (i.e., Dx 5 20 km) in the
projection.

Figure 3 shows the energy distribution of the histor-
ical velocity fields projected on the full set of 784 1
784 basis functions. An attribute of this spectral tech-
nique is that the geometric properties of the basis func-
tions are associated with phenomenological scales. For
example, the most energetic mode, c(1,2), is a stream-
function with one-half sine wave in the x direction and
a full sine wave in the y direction. This is exactly the
geometry of the the basinwide double gyre. The color
scale in Fig. 3 identifies modes that contain at least 1%
of this energy. As expected, in this parameter range,
where the dynamics are largely quasigeostrophic, the
2D divergence-free streamfunction modes contain the
vast majority of the energy.

In addition to the dominant double-gyre mode, large
streamfunction energies exist in modes c(2,2)–c(8,2) and
c(6,1)–c(8,1). The geometric structure of these modes in-
dicate that they represent the westward intensification
of the gyre structure.

Similarly, the most energetic velocity potential modes
identify 2D divergent effects associated with the double-
gyre Ekman pumping, f (1,2); the ageostrophic compo-
nents of the jet, f (2,6) and f (2,8); and the westward in-
tensification, f (4,2)–f (9,2) and f (6,1)–f (8,1).

Note the different pattern of energy distribution in
the wavenumber plane between the streamfunction and
velocity potential modes. The velocity potential modes
contain negligible energy in symmetric flow structures,
such as eddies.

Reconstruction error relative to the model truth on an
interior subdomain D arises when fewer degrees of free-
dom exist in the basis function set than in the model
field. This will always be the case. To quantify the re-
construction error for the test problem, we choose the
kinetic energy of the difference vector normalized by
the energy of the model field:

2(u(t) 2 u(t) ) dAE model proj

D
E(D, t) 5 , (14)

2(u(t) ) dAE model

D

where D is the region (10 km # x # 1000 km, 200 km
# y # 1600 km). The temporal mean of the error over
the 50-day test period will be denoted E(D) .

Figure 4 shows the falloff of E(D) with increasing
numbers of modes. All 198 3 198 interior grid points
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FIG. 3. Mean energy distribution in wavenumber space for the
streamfunction and velocity potential modes computed by projecting
a 10-yr model history on 1568 basis functions. Interior grid points
were uniformly observed at a spatial resolution of 20 km, sampled
every 90 model days. Modes containing 1% or more of the energy
of the most energetic mode are shown in color on a log-energy scale.

were used in each projection. Selection criteria of the
mode subsets is based on the 10-yr historical energy
content of the basis functions. Table 1 lists the specifics
of each mode subset.

The largest subset includes all modes from Fig. 3
containing energy within 1% of the double-gyre mode
c(1,2). Of the 191 modes in this subset, 13 are velocity
potential. The smallest subset has 65 streamfunction and
no velocity potential modes.

Note the change in slope of the reconstruction error
curve in Fig. 4 at the 107 mode subset. After this subset,
velocity potential modes are included in the reconstruc-
tion. Between 65 and 107 modes the error is reduced
by 0.33% per mode, while between 107 and 191 modes,
error is decreased by 0.12% per mode. The decreasing
rate in error reduction indicates the velocity field may
be represented with relatively few modes.

The global energy captured for each reconstruction
listed in Table 1 is computed by summing the square
of the eigenfunction amplitudes (9) during the recon-
struction period and normalizing by the kinetic energy
of the model. The reconstruction error E(D) is very
close to the uncaptured global energy of the reconstruc-
tions.

Mode selection for this model may be summarized
as follows: Analytic basis functions provide arbitrary
spatial resolution, which in theory could reproduce the
exact model velocity on the computational grid. Phys-
ical scales, such as the Rossby radius, provide a practical
minimum spatial resolution scale. Energetics from sam-
pling the 10-yr historical model flow reduces the number
of basis functions further. Consistent with the physics
of the model, the streamfunction modes contain most
of the energy.

5. Basin Eulerian reconstructions from drifter
data

Our goal is to reconstruct the model Eulerian velocity
field from a limited amount of simulated Lagrangian
drifter data. Given the topology of the model double
gyre, we focus on accurately representing the energetic
western region identified in Fig. 1. Large velocities in
this region exacerbate the difference between Lagrang-
ian and Eulerian data.

The least squares reconstruction requires that the ma-
trix problem is overdetermined; the number of obser-
vations must be greater than the number of unknown
modal amplitudes. Since we wish to investigate the re-
construction error associated with minimal numbers of
drifter observations, the choice of a particular normal
mode analysis (NMA) basis set for the drifter experi-
ments is dictated by the conflicting requirements of a
low base reconstruction error and a limited number of
modes (see Fig. 4). As a compromise, we chose the 107
mode basis set consisting only of 2D divergence-free
streamfunction modes. This basis set provides quasi-
geostrophic approximation to the primitive equation
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FIG. 4. Mean reconstruction error E(D ) as a function of the number of modes in the
projection. All interior grid points were used in each projection.

FIG. 5. Mean energy distribution in wavenumber space for the 107
divergence-free basis functions during the reconstruction period using
all 198 3 198 interior grid points as an observation vector.

TABLE 1. Details of the mode subsets with full observation of the
Eulerian field.

Energy of c(1,2)

in the least
energetic mode

(%)

Streamfunction/
velocity

potential modes

Global energy
captured

(%)

Reconstruction
error E(D)

(%)

1.0
1.5
2.0
3.0
4.0
5.0

10

178/13
153/8
140/5
117/2
107/0

94/0
65/0

95
92
89
87
85
81
70

5.8
9.3

12
14
16
20
30

model with a base error, using the entire Eulerian model
field as the observation vector, of 15%.

Figure 5 illustrates the distribution of energy in wave-
number space for the 50-day reconstruction period. The
flow is more anisotropic than the 10-yr historical sample
indicates in Fig. 3. For example, Fig. 3 shows a smooth
distribution of energy between c(1,2) and c(8,2) while Fig.
5 exhibits a local energy peak at c(9,2). Two energy bands
centered at c(2,8) and c(2,6) appear in Fig. 5 but not in
Fig. 3.

The anisotropic features exhibited during the 50-day
reconstruction period are additional indicators to assess
the quality of reconstruction from drifter data. The en-
ergy distribution in Fig. 5 will serve as a reference to
compare specific reconstructions.

Drifter data were obtained by initializing fluid tracers
in the region D and computing Lagrangian trajectories
using third-order polynomial spatial and linear temporal
interpolation of the model velocity fields with standard
fourth-order Runge–Kutta integration at 2.4-h time
steps. As such, these simulated drifters approximate flu-
id particles up to the accuracy of the numerical scheme.

Drifter velocities and position are stored once per sim-
ulation day.

The drifter data do not adequately sample the qui-
escent region outside D. Although the reconstruction
error does not measure the error outside D, the basis
functions require observations there to avoid unrealistic
global behavior. Thus, the drifter observations are aug-
mented with a limited number of uniformly spaced Eu-
lerian observations outside the region D taken from the
10-yr historic mean model field. Spacing of the uniform
climatological sample is chosen to prevent data voids
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FIG. 6. Reconstruction error vs number of Lagrangian observations, Ndrift. For each value of Ndrift, 25
different random initial deployments are shown. The average error is given by the solid line.

larger than the smallest scale basis function. Such data
voids cause undersampling that produces spurious flow
structures in the reconstruction, a phenomenon referred
to as noodling. The smaller structures present in the 107
modes chosen have spatial scales ranging from 250 km
in the x and y directions (c(8,8)) to 154 km in the x
direction (c(13,2)). A uniform sample of 200 km in the
quiescent region gives 65 sample points and is adequate
to prevent unrealistic behavior. The reconstruction error
is not sensitive to the climatological sampling strategy.
The drifter and climatological velocities together make
the observation vector (8).

The relation between E(D) and the number of drifters
deployed is shown in Fig. 6 using random launch lo-
cations of 50 to 200 drifters. For each fixed number of
drifters, 25 experiments are conducted and the ensemble
average reconstruction error is shown by the solid line.
The average error is inversely proportional to the num-
ber of observations, Ndrift , and asymptotes to the base
error computed using the full Eulerian dataset as input.
Notably, velocity observations from 200 randomly
launched drifters can provide reconstructions within 1%
of the base error.

The asymptotic approach of reconstruction error to
the base error as Ndrift increases under random deploy-
ments is verified for all mode subsets listed in Table 1.
The saturation level depends on the number of modes
used, but does not exceed 2% of the model grid points
in the subdomain D.

Two important issues are unresolved by Fig. 6. Since
the drifter deployment for each reconstruction in an en-
semble is random, data voids were minimized as Ndrift

increased. Does launching a significant number of drift-
ers guarantee an accurate reconstruction regardless of

the deployment strategy? Does the error increase or de-
crease as the drifters leave the random launch locations?
The next section attempts to quantify the first issue,
while the following section examines the second.

a. Drifter coverage

There exists a considerable amount of variability in
the error in experiments using a fixed number of drifters.
This variability increases dramatically as fewer drifters
are deployed. For example, as seen in Fig. 6, the error
spread in the reconstruction for experiments using 80
drifters overlaps that of experiments that use 140 drift-
ers. The reconstructed fields are sensitive not only to
the number of Lagrangian observations but also to the
quality of these observations.

Poje and Haller (1999) show how the model flow is
governed by geometrical aspects of the invariant man-
ifold structure. In particular, the initial launch location
will to a large extent determine the dispersion of the
fluid particles. Without detailed knowledge of the flow
specifics, general physical principles may be employed
to estimate the dynamic scales. Drifters located within
a Rossby diameter of each other should provide redun-
dant information for the 107 mode reconstruction, ef-
fectively reducing the number of independent obser-
vations.

To quantify coverage of the domain, we introduce the
concept of an active cell. Let Ci with i 5 1, · · · , Ncell

be a partition of the subdomain D such that D 5
Ci and Ci ù Cj 5 ø. A cell Ci is said to be activeNcell<i51

if at least one drifter is located in the cell. Denote a set
of drifters by xj(t) with j 5 1, · · · , Ndrift and define
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FIG. 7. Reconstruction error E(D ) vs coverage a . The linear correlation between E(D) and
1/a 2.6 (dotted curve) is r 5 0.87. One hundred experiments with initial coverage ranging from
15 to 180 randomly chosen cells generate the pattern. A uniform initial distribution experiment,
which also occupies 180 cells, is shown (triangle) for comparison.

Ndrift
1, if C ù w x (t) ± øNdrift i j j51A C , w x (t) 5 (15)i j 1 2j51 0, otherwise.

The time-dependent coverage function is then

N Ncell drift

a(t) 5 A C , w x (t) . (16)O i j1 2i51 j51

The size and shape of the cell delineates what is con-
sidered a redundant observation; that is, if two drifters
are located within a cell, their observations are consid-
ered redundant. Deployments maintaining a large num-
ber of active cells minimize redundant observations.

Specifying the optimal decomposition Ci is not a triv-
ial task. Ideally, a full knowledge of the spatial decor-
relation function is needed. However, even with perfect
knowledge of the flow field, this is a computationally
intensive task. Since we know the physics of the flow
more precisely than the spatial decorrelation function,
a simple decomposition of D into 70-km square cells is
used. This spatial scale represents twice the smallest
Rossby radius of the flow.

The relationship between coverage and reconstruction
error is studied using 180 drifters. Random launch lo-
cations are chosen for 100 experiments with initial cov-
erage ranging from 180 to 15 active cells out of 285
possible cells in the domain. Figure 7 shows the rela-

tionship between E(D) and the mean coverage a . For
reference to the results obtained from the random dis-
tribution of initial cells, an experiment with a uniform
distribution of 180 drifters throughout the domain is
performed. One drifter is deployed approximately every
83 km in the x direction and 93 km in the y, so the
initial coverage is 180 cells. The mean error and cov-
erage properties of the uniform deployment fit the gen-
eral pattern of the other, random deployments. Note that
uniform initial distribution does not give the highest
mean coverage.

A standard least squares approximation to a geometric
model gives E(D) } 1/a 2.6. The linear correlation co-
efficient between E(D) and 1/a 2.6 is r 5 0.87, indicating
that the simple domain decomposition provides a rea-
sonable indication of coverage. Figure 7 indicates that
high coverage implies a low reconstruction error. How-
ever, for low coverage experiments, a wide range of
reconstruction error exists for the same mean coverage.
A more detailed, spatially dependent decomposition
would improve the correlation.

The asymptotic relation between error and coverage
shown in Fig. 7 is robust in that modifying the cell size,
the number of drifters, or the number of modes does
not alter the results appreciably. For all mode subsets
listed in Table 1, the reconstruction error E(D) asymp-
totes toward the base error that is achieved with full
observation of the Eulerian velocity field as coverage
increases.
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FIG. 8. A comparison between reconstructions from good and poor drifter coverage at day 1.

Figures 8 and 9 compare two reconstructions from
the 100 experiments at day 1 and day 49. The good
coverage experiment launches drifters in 180 cells; the
poor coverage experiment launches the drifters in 15
active cells.

Day 1 of the reconstruction in Fig. 8 shows noodling
in the poor coverage reconstruction. A comparison with

Fig. 2 reveals incorrect velocity peaks on the western
boundary at 400 and 1000 km and a false eddy in the
western domain south of 400 km. The good coverage
reconstruction does not exhibit this structure. Details of
the difference field in the subdomain D is also shown
in Fig. 8. Note that the color scale on the difference
field has a maximum of 0.2 m s21 while the color scale
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FIG. 9. A comparison between reconstructions from good and poor drifter coverage at day 49.

on the model and reconstructed fields has a maximum
of 0.6 m s21. Similar patterns exist in the difference
field of the good and poor coverage reconstructions,
although the strength of the patterns differ. For example,
the southern part of the central jet in both fields is un-
derestimated, while the northern part is overestimated.

On the northern part of the western boundary of D, the
western boundary current is underestimated in both
fields. The poor coverage reconstruction, however, ex-
hibits structures with significant energy on the central
and southern part of the western boundary and in the
southern region of D.
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Day 49 of the reconstruction in Fig. 9 shows the
noodling that occurs in the poor coverage reconstruction
has moved to the regions north and southwest of the
central jet with artificial eddies in the velocity field.
Error near the central and southern part of the western
boundary in this reconstruction, however, is reduced
from that of day 1. Both good and poor coverage re-
constructions underestimate the strength and length of
the central jet. The difference fields do not exhibit the
overestimation in strength of the northern section of the
jet as occurred on day 1. Both difference fields have
similar patterns in the region south of the central jet,
on the northern part of the western boundary of D, and
in the region extending from the central portion of the
eastern boundary of D.

b. Moorings versus drifters

The present implementation of the NMA technique
treats temporally evolving Lagrangian trajectory infor-
mation as variable position Eulerian measuring stations.
Aspects of the flow are manifested through dispersion
and the resulting change in coverage. The strong relation
between coverage and reconstruction error indicate that
the temporal evolution of E(D, t) should be very dif-
ferent for drifters and moorings.

To examine these differences we chose two different
initial sets of launch locations corresponding to good
and poor spatial coverage. Velocity observations are
then taken at subsequent times from these fixed posi-
tions (moorings) and along the Lagrangian trajectories
(drifters) emanating from these initial conditions. The
reconstructed velocity fields are thus identical at the
initial time.

Figure 10 indicates the time dependence of E(D, t)
computed for each set of 180 moorings or drifters for
both good and poor coverage. For reference, E(D, t) is
computed from the reconstruction using all 198 3 198
interior grid points as mooring observations. The time
interval is extended to 120 days so the effects of drifter
dispersion can be shown.

Note that the reconstruction error is time dependent
when fixed mooring data or the entire Eulerian field is
used as observations. In contrast to linear flow, where
the transient solution decays, the nonlinear double-gyre
flow does not approach a steady solution. Instead, there
is a time-dependent flux of energy across spectral com-
ponents as the jet meanders and when eddies are shed,
coalesce, and decay.

The good initial coverage experiment has 180 active
cells at launch. This coverage can only go down as the
drifters advect. The moorings, however, maintain the
180 active cells throughout the experiment. As expected,
E(D, t) increases in the drifter experiment and remains
low in the mooring experiment. It is interesting that the
well-placed moorings have a lower reconstruction error
than the reference reconstruction using all 198 3 198
grid points. Since the chosen subdomain D is well cov-

ered in the mooring experiment and only 65 climatology
samples are taken outside D, the least squares mini-
mization weighs the drifters almost 3 to 1. The 198 3
198 observations use no climatology, but the quiescent
region is almost three times larger than the subdomain
D. As a result, the reference reconstruction has a slightly
higher local error E(D, t) due to the high number of
observations in the quiescent region.

In the case of poor initial coverage, the opposite effect
is observed. The dispersion of Lagrangian particles in-
creases the spatial coverage of the drifter observations
in time while the coverage of the moorings remains poor.
After 120 days, the errors from both the good and poor
initial coverage drifter experiments are near 20%. Un-
like the temporal evolution in reconstruction error ex-
hibited by the mooring experiments, data voids gener-
ated and removed by drifter dispersion dominate the
reconstruction error for both good and poor initial cov-
erage drifter experiments.

Figure 11 compares the energy distribution of the
reconstructions for the first 50 days. The good coverage
experiments distribute energy similar to the base pro-
jection in Fig. 5. Differences occur in some of the higher
wavenumbers. For example, both the drifter and moor-
ing reconstruction show an energy peak at c(2,12) not
present in Fig. 5.

Noodling in the poor coverage experiments signifi-
cantly alters the energy distribution in the wavenumber
plane. The distinct energy minima at c(2,9) and c(10,4)

captured in the good coverage experiments do not ap-
pear with poor coverage.

The poor drifter and mooring reconstructions differ
appreciably in the energy distribution because the cov-
erage and noodling varies temporally with the drifter
trajectories. Conversely, the good drifter and mooring
reconstructions are quite similar since noodling is min-
imal.

6. Conclusions

This study has addressed some of the issues involved
in utilizing Lagrangian data. The approach relied on the
orthogonal reduction technique of normal mode anal-
ysis. The analysis quantified the accuracy of the recon-
struction in relation to the number and coverage of ob-
servations, and number of spectral modes. The coverage
results are generic in that the same pattern of error re-
duction with improved coverage exists for many dif-
ferent drifter–mode combinations. In this study, we
found the Eulerian flow field can be accurately recon-
structed with data representing approximately 1.5% of
the 12 600 model grid points in the subdomain of in-
terest. The error of the reconstructed velocity fields as-
ymptotes to the base error (achieved with full obser-
vation of the Eulerian field) in two independent vari-
ables: coverage (with an adequate number of drifters)
and number of drifters (with adequate coverage). As a
result, with adequate coverage and data, the reconstruc-
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FIG. 10. The time dependence of the error E(D, t) from good or poor coverage reconstructions
using 180 drifters or moorings and 107 modes. Moorings are located at the initial position of the
drifters. The base reconstruction error is included for comparison.
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FIG. 11. Mean energy distribution in wavenumber space of the 107 divergence-free basis functions from drifter or mooring
reconstructions.

tion error can be improved by increasing the number of
modes. The velocity potential modes are crucial to ob-
taining reconstruction errors under 10% for the double-
gyre flow. Clearly, different real or simulated flow fields
would require more or less observations to accurately

reconstruct the varying importance of the velocity po-
tential modes.

The number of modes used in a particular reconstruc-
tion is dictated by several factors. Irregular domains
require numerical solutions to the Helmholtz equations,
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thus imposing a grid resolution on the basis functions.
Additionally, there is a limit on the spatial resolution
due to the maximum number of eigenfunctions that may
be resolved numerically. Energy distribution of a pro-
jection may still be analyzed with numerical basis func-
tions. However, the two-dimensional wave number
space is reduced to a one-dimensional eigenvalue space
and the geometric associations with flow structures is
less obvious.

Knowledge of the 10-yr history of the flow was used
to reduce the number of basis functions. The controlled
nature of this study, involving analytic basis functions
and access to the ‘‘true’’ flow field, permitted such an
analysis. For basin-scale ocean flows where such exact
information is not available, remotely sensed altimeter
data and general circulation models could be used to
study the mode energetics and, if needed, reduce the
number of basis functions.

One limitation of the technique is noodling. This aris-
es when data voids are of comparable size to the spatial
scale of the highest wave-numbered basis function. This
was prevented from occurring outside the active sub-
domain, approximately two-thirds of the basin, by a
uniform 200-km sample of the static climatology. We
chose not to fill voids in the active flow region to iden-
tify the consequent error. In practice, appropriate data
filling techniques should be employed when data voids
of this type occur.

Deployment of drifters with the best possible initial
coverage on a basin-scale domain is not practical. Poor
initial coverage experiments, while much more practi-
cal, vary widely in the reconstruction accuracy due to
the heterogeneous dispersive characteristics of the flow.
Launch strategies based on some knowledge of the flow
should improve the coverage, given a fixed number of
deployment locations.

The effect drifter dispersion has on reconstruction
error is an important consideration. As illustrated by the
drifter versus mooring analysis, poor initial coverage
can, after adequate dispersion occurs, still give reason-
able reconstruction errors. Conversely, good initial cov-
erage is degraded by dispersion. These results indicate
a need for time-dependent launch strategies. Combined
with other data sources, this would alleviate data voids.

Treshnikov et al. (1986) proposed a drifter launch
scheme based on the reconstruction of the surface pres-
sure field and the energy of the currents. An alternative
approach would be to use dynamical systems tech-
niques, such as described for this flow by Poje and Hall-
er (1999), to identify potential data voids.

This study did not make use of the a priori knowledge
of model flow features. Approximating the location of
hyperbolic points, for example, might give launch sites
that disperse drifters quickly. Future work should ad-
dress approximating such dynamical features in the
ocean.

Assessing the quality of reconstruction using the dif-
ference vector field energy, an Eulerian metric provides

no assessment of Lagrangian features of the recon-
structed flow. How the Lagrangian dynamics of the re-
constructed field compare to the original remains un-
answered.

The reconstructed flow fields have a wide range of
application. Nowcasts, model improvement, and rapid
environmental assessment are obvious candidates. More
subtle applications include drifter deployment strategies
and manifold approximation.
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