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ABSTRACT 

We describe a procedure to improve both the accuracy and 
computational efficiency of finite difference schemes used to 
simulate nonlinear PDEs. The underlying idea is that of enslaving, 
which is the estimation of the small unresolved scales in terms of 
the larger resolved scales. We discuss details of the procedure and 
illustrate them in the context of the forced Burgers' equation in one 
dimension. We present computational examples that demonstrate 
the predicted increases in accuracy and efficiency. 

1. Introduction 

In this paper we describe a procedure for improving both the accuracy and 
the computational efficiency of finite difference schemes that are used to solve 
nonlinear dissipative PDEs. The increase in accuracy, in theory, is the result of 
estimating the effects of the small scales that are unresolved on the mesh in 
terms of the larger resolved scales. The modified scheme is actually constructed 
to approximate the solution that the original scheme would generate on a finer 
mesh. Although the new scheme is more expensive to compute, we have found 
that this is more than compensated by the increase in accuracy, 

Our procedure depends on the nonlinearity of the equations and is similar to 
that used in deriving nonlinear Galerkin schemes' ~ ~ $ 3 .  In particular, both 
procedures construct an enslaving relation -- a diagnostic relation between the 
unresolved small scales and the larger resolved scales. Two differences are that 
we do not assume the solution has an inertial manifold, and that we are using 
finite difference methods rather than expansion in orthogonal polynomials. The 
theory of the approximate inertial manifold, upon nonlinear Galerkin schemes are 
based, provides the closure assumptions that lead to the enslaving relation. Our 
closure is similar, but is justified by the assumption that the time derivative is not 



part of the principal balance of terms; thus our method is designed for flows that 
slowly evolve or that exhibit small scale fluctuations about a larger scale steady 
state. 

The construction of enslaving relations in the context of finite difference 
schemes is not at all straightforward. In a previous paper4 (hereafter MJ) we 
addressed some of these difficulties, including the identification of the small scale 
modes and the derivation of the enslaving relations. We applied our theory to the 
one-dimensional Burgers' equation, and showed a significant increase in 
accuracy when compared to the unimproved scheme. However the approach 
outlined in that paper has several deficiencies. In particular, the construction 
procedure for the enslaving does not easily generalize to multiple dimensions, 
especially with irregular boundaries. In addition, we restricted our attention to the 
solution in steady state and so considered the spatial truncation error but not the 
error due to time differencing. Finally, even in one dimension, we found 
difficulties using Dirichlet boundary conditions. 

In a more recent papers we have generalized our procedure to remedy these 
problems. The main thrust of this paper was to establish a more mathematical 
foundation for our theory, as well as to provide rigorous error estimates. 
Although this paper included several computational examples, the discussion of 
practical details necessary to derive the enslaved schemes was very brief. Our 
principal purpose in this paper is to provide a fuller description of those details. 

2. General Description 

We consider the numerical solution of a PDE representing the evolution of a 
nonlinear dissipative dynamical system. We suppose we are given a discretized 
finite-difference equation that approximates the PDE to some order of accuracy. 
Our goal is to modify this discretization so as to produce solutions of higher 
accuracy. Of course, one can always improve the accuracy of a well-posed 
numerical scheme by increasing the resolution. Thus, an important aspect of our 
modification is that the new equations should be computationally more efficient -- 
Le., the modified scheme should require less CPU than the original scheme to 
produce a solution of a specified level of accuracy. 

Our strategy is to derive a modified scheme on a coarse mesh that 
reproduces the accuracy of the original scheme on a twice-finer mesh. It is 
important to note that modifications based on this strategy, even if completely 
successful, cannot improve the order of accuracy. That is, the error of the 
original scheme on the finer mesh has the same dependence on the derivatives 
of the solution, but with smaller coefficients. The implementation of this strategy 
follows the following steps. 



We implement the original scheme on the twice-finer mesh. There are twice 
as many degrees of freedom on this fine mesh as there are on the coarse 
mesh. 
We define a transformation of variables that maps the degrees of freedom of 
the fine mesh onto the coarse mesh. Half the variables on the coarse mesh 
represent the average solution in a cell -- the large scales -- and the other 
half represent smaller scales that will be unresolved on the coarse mesh. 
We form the evolution equations for the new variables. 
We apply a closure assumption to the new evolution equation for the small 
scales. This closure involves ignoring the time derivative, and yields a 
prognostic relation between the small scales and the large scales. 
We solve the prognostic equation to express the small scales in terms of the 
larger scales. This is the enslaving relation. 
We implement this relation in the new equation for the large scales. The 
result is our improved discretization. 

We illustrate these steps with the forced Burgers' equation, which is a simple 
example of an equation that has both nonlinearity and dissipation. We 
emphasize that our arguments are more generally applicable. We employ the 
following spatial discretization: 

Equation (1) does not specify the method of time integration. We will return to 
this issue in section 8. Here h is the coefficient of viscosity and f is a force that is 
known, but may vary in space and time. The cell size is 5x, which characterizes 
the coarse mesh -- the mesh on which we will compute. We assume that there 
are N real cells on this mesh, so that the subscripts k=l ,N refer to spatial index. 
The particular differencing of the nonlinear (advective) term is neither unique nor 
optimal, but is second-order accurate in space and is chosen just for illustration. 

3. Coordinate Transformations 

As our first step, we consider the scheme (1) applied to a twice-finer mesh, 
whose cells are 6x/2 in length. On this fine mesh, there are approximately 2N 
cells (depending on the precise relation between the two meshes) and so 2N 
degrees of freedom. We want to identify N degrees of freedom with the solution 



on the coarse mesh, and the other N degrees of freedom with the smaller, 
unresolved scales. To facilitate this, we write (1) as a coupled system of two 
variables (a$) where, say, a is the solution in the odd-numbered cells and p is 
the solution in the even-numbered cells. 

The next step is to define a transformation of variables a=a(a,p) and b=b(a,P) 
such that a represents the larger scales and b represents the smaller scales. In 
MJ we derived this transformation geometrically by introducing basis sets on the 
coarse and the fine meshes. This was a useful but unnecessary step, and here 
we will proceed more directly. 

The important aspect of the transformation derived in MJ is that a-O(a) 
whereas b-O(da/ax 6x). The particular transformation used in MJ is 

One important virtue of the transformation (3) is that it has an exact inverse, 
which facilitates the derivation of the new equations. However (3) also has a 
disadvantage for Dirichlet boundary conditions. In effect, (3) describes each pair 
of fine cells as the left and right halves of a coarse cell. Since we conceive the 
variables as being located at the cell-centers, none of the variables on the fine 
mesh are coincident with variables on the coarse mesh. This implies that 
boundary conditions cannot be specified at exactly the same points on the coarse 
and fine meshes, and that some averaging is necessary to apply Dirichlet 
conditions, with consequent loss of accuracy. 

This geometric interpretation suggests that an alternate transformation to (3) 
might be more suitable. Instead of defining a symmetrically in terms of (a$), we 
identify a primarily with either a or p. In addition, we want to identify b with the 
smallest stencil estimating the difference Aa. A general form for a linear 
transformation with these properties is 



where A is a centering parameter. The factor 4 in the bottom of the b-equation is 
chosen for convenience. Equation (4) corresponds to the relationship where the 
centers of the a-cells of the coarse mesh, and the a-cells of the fine mesh 
coincide. 

The transformation (4) has a disadvantage that makes it more difficult to use 
-- equation (4) has no exact local inverse. However, since (3) is only second- 
order accurate in space, we expect that an approximate inverse would work if it is 
sufficiently accurate. It is not difficult to show that a second-order accurate 
inverse of (4) can be written as 

Equation (5) is not unique, but does have the narrowest stencil -- Le., is the most 
local inverse to (4) -- that is second-order accurate. We emphasize that (4) and 
(5) have been derived independently of any particular PDE. 

4. The Transformed Equations 

The next step is to form the equations that govern the evolution of the 
variables a and b. These are combinations of a and J3 equations, with the 
coefficients given by (4): 

) abk  G - (  1 a P k+1/2 a P k-1/2 

a t  4 a t  a t  

We substitute for the derivatives on the right-hand-side of the equations using 
(2), which leads to equations for a and b, but still written in terms of a and J3. We 
can then use (5) to eliminate a and J3 in terms of a and b. This procedure is 



straightforward, but leads to a very complex set of equations. In the next 
sections we will discuss several aspects of these equations, which will lead to 
considerable simplifications both in their appearance and their application. 

5. Compatibility Relations 

We begin by writing the new equations in symbolic form 

(7) 

Here Na and Nb are the nonlinear terms, which we do not write out yet. The 
force functions are: 

1 
4 F b (f k) E - ( f k+1/2 - f k-1/2 ) 

The dissipative terms are: 

(2 - A )  (1 - 2 A )  
2 

a k-2 1) 

(b k+l - b k-1 

(9) 

(ak+l - 2 a k  +ak-l ) +  
A (3 -A) 

4 Da(ak) E 

(A-1 )2  

16 ( a k+2 - a k+l - a k-1 

and 

Now to derive the enslaving, we set the time derivative in the b-equation (7b) 
to zero: 
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and attempt to solve (1 1) algebraically for bk. Independent of Nb, the form of Db 
immediately presents a problem -- the variable b appears as a second difference 
in (lo), which is not easily invertible. In MJ, we used truncation analysis to find 
an ODE that we solved for the enslaving. This solution required two constants of 
integration, whose estimation degraded the accuracy of our enslaving. 
Furthermore, the ODE technique is much more difficult to apply in multiple 
dimensions, especially in a domain with irregular boundaries. Here we introduce 
an alternative that is both simpler and more accurate. 

We derive a set of subsidiary relations by composing (4) with (5). This yields 

and 

These are approximate identities, which we have termed compatibility relations. 
Substituting the second compatibility relation (12b) in the diffusional part of the b- 
equation, (lo), yields an expression diagonal in b -- that is, containing only bk. 
This considerably simplifies the construction of the enslaving relation. Also, 
substituting the first compatibility relation (12a) into our expression for the 
diffusional part of the a-equation (9) leads immediately to an expression that is 
independent of bk. This has some advantages in semi-implicit methods where 
the diffusion term is treated implicitly. 

6. Compression Relations 

Another feature that is evident in both diffusional terms (9) and (10) is that 
they involve terms with indices kf 2, implying that the stencil of the new scheme 
is wider than that of the original scheme. A wider stencil does not introduce any 
real difficulties. On the other hand, it is not an essential element of the theory 
and can be compressed. Consider for example (ak+2 - 2ak + ak-2). Ordinary 
truncation analysis shows 



Thus we may substitute 

without degrading the accuracy of the scheme which is only of second order. 
Approximations such as (1 4) are termed compression relations. 

There is a subtlety in using these compression relations. The point is most 
easily illustrated by considering Burgers' equation (1). Recalling our assumption 
that the time derivative is not part of the principal balance of terms, we can write 

u2k+l - u2k-1 - hU k+l - 2uk  Uk- I  

2 6x 6x2 

Let U be a typical velocity, and L >> 6x be a typical lengill scale o1 the problem. 
A simple scale analysis then indicates 

The point is that in a nondimensional sense, h is a much larger constant than 
unity. In the same sense, third-order derivatives in the dissipative term are 
similar in magnitude to second-order derivatives in the nonlinear term and so 
cannot be discarded. 

Equation (1 5) provides a useful approximation for more general compression 
relations. For example, we can write 

6x2 f k + l  6X ak+2 - 2ak+l + ak G - [a2k+2 - a t ]  - - 
2 h  h 

so that we can compress a term appearing in (1 0) for Db: 



Note that (15) is derived from the original discretization ( l) ,  while the a-variable 
will be evolved by the modified discretization that we are deriving. Thus in writing 
(17), we make an additional small approximation beyond ignoring the time 
derivatives. 

7. The Centering Parameter 

When the various approximations described in the previous sections are 
applied to the general form (7) the resulting evolution equations take the form: 

and 

2 
i- Fx  (f k+1/2 - f k-1/2) 
32 h 

Note that a remarkable simplification has occurred -- the centering parameter A 
has dropped out of the equations except for the forcing term in the a-equation. 

The enslaving relation (20) is already diagonal and requires no iteration. In 
terms of magnitude, the first term on the RHS of (20) is the largest. We have 
constructed b to estimate the first derivative of a, and so a first-order estimate 
turns out to be independent of the evolution equation -- in fact, really arises from 
the first compatibility relation (12a). The second term on the RHS represents a 
nonlinear diffusion, whereas the third term adds subgrid scale information about 
the spatial tendency of the forcing. 

In the a-equation, the diffusion term remains unchanged. This is in contrast 
to our results in MJ where the diffusive term contains significant contributions 
from the b-variables. As we have noted in the previous section, the viscous 
coefficient h is large in a dimensionless sense, and so we would prefer to make 
errors in the nonlinear term rather than the diffusion term. In particular, b is an 
auxiliary variable, and has no physical specification in the case of Dirichlet 
boundary conditions, introducing the possibility of error (see MJ for a discussion). 



Finally we consider the choice of the centering parameter A. We expect the 
choice A = 0.5 to be the most accurate, and would be preferred when the force 
has significant variation on the scale of a cell. In some cases, the evaluation of 
the force can be expensive, and then it might be preferable to choose A=l .O We 
note that the force is a known function of space and time. The incorporation of 
fine-scale information about the forcing in the enslaving can be an important 
source of the improvement in the accuracy of the solution. 

8. Time Integration 

The enslaving relation (20) is independent of the details of the time integration 
since it is derived by ignoring the time derivative. However the order of accuracy 
of the time integration can affect the formulation of our improved algorithm. We 
note that the maximum timestep permitted by (2), which is solved on the twice- 
finer mesh, is necessarily smaller than could be used on the coarse mesh. After 
the change of variables leading to (7), the system is still equivalent to (2) and so 
is also governed by the smaller timestep of the fine mesh. It is the closure, 
setting the time derivative of b to zero, that allows us to increase the timestep. 
Use of this larger timestep is necessary if the new algorithm is to be more 
efficient than the old. 

It is important to remember that the algorithm (2) has both spatial errors and 
temporal errors. Our strategy has been to reduce the spatial errors of the coarse 
mesh to those of the fine mesh. However the larger timesteps permitted by our 
algorithm will certainly lead to larger temporal errors than would be present in the 
fine-mesh solution integrated with the smaller timestep. These errors may 
become noticeable as the magnitude of the time derivative increases, and 
indicate the need for a more accurate time integration scheme. 

To illustrate this point, we present the following computational example. We 
consider the forced Burgers' equation on the interval x E [0,1], and with Dirichlet 
boundary conditions u(O)=u(l)=O. We choose an exact solution 

u(x,t) = sin (nx) { 1 + E [ x cos (cot) + (1-x) sin (cot) ] } (21 ) 

where E and (i3 are positive constants that measure the importance of the time 
variation. As these parameters are increased, the time derivative of the solution 
grows and the validity of our enslaving relation decreases. By substituting (21) 
into Burgers' equation, we can derive the force that generates this solution. For 
our example, we discretize this force, and use it to drive the enslaved system 
(19) and (20) as well as the original system (l) ,  each using two different time- 
integration schemes. Finally, we measure the accuracy of each numerical 



solution by comparing it with the exact solution in the L" norm -- i.e., the 
maximum deviation of the computed nodal values from the true nodal values of 
the exact solution. 

In figure 1, we show the error ratio of the original scheme [equation (2) to the 
enslaved second-order scheme [equations (1 9) and (20)], using forward Euler 
time integration. Each of the four panels contains three calculations with a 
distinct value of o and three value of E .  In figure 2, we repeat these twelve 
calculations, but using a second-order accurate MacCormick integration scheme. 
The solid line on each plot of figures 1 and 2, at the error ratio = 1.6 represents 
the breakeven level, below which the enslaved scheme becomes computationally 
less efficient than the original scheme. The total amount of time spent above 
(below) this line indicates whether the enslaved scheme is more (less) efficient 
than the original scheme. In figure 1, there are significant regions where the 
error ratio drops below the breakeven line. These regions become much smaller 
in figure 2 where the higher-order MacCormick scheme is used. Note that in both 
figures, the error ratio is greater than unity almost everywhere. These points are 
discussed in more detail in JMP. All calculations in figures 1 and 2 use the same 
mesh and the same timestep. 

In figures 3 and 4 we illustrate the dependence of the accuracy on the order 
of the integration scheme. Both figures are graphs of the average error 
(integrated over a problem cycle) as a function of the timestep used. The 
numerical data in figure 3 was generated with a forward Euler scheme and shows 
the error of both the original and the enslave schemes increases significantly with 
timestep. The data in figure 4 was generated with a MacCormick scheme, and 
shows no sensitivity to the timestep. In both cases, the extreme values of o=l On; 
and &=IO. Note also the original and the enslaved schemes allow the same 
maximum timestep for both time integration schemes. 
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