767 research outputs found

    The Quasar Accretion Disk Size - Black Hole Mass Relation

    Full text link
    We use the microlensing variability observed for nine gravitationally lensed quasars to show that the accretion disk size at 2500 Angstroms is related to the black hole mass by log(R_2500/cm) = (15.6+-0.2) + (0.54+-0.28)log(M_BH/10^9M_sun). This scaling is consistent with the expectation from thin disk theory (R ~ M_BH^(2/3)), but it implies that black holes radiate with relatively low efficiency, log(eta) = -1.29+-0.44 + log(L/L_E) where eta=L/(Mdot c^2). These sizes are also larger, by a factor of ~3, than the size needed to produce the observed 0.8 micron quasar flux by thermal radiation from a thin disk with the same T ~ R^(-3/4) temperature profile. More sophisticated disk models are clearly required, particularly as our continuing observations improve the precision of the measurements and yield estimates of the scaling with wavelength and accretion rate.Comment: 5 pages, 3 figures, submitted to ApJ

    Mid-IR Observations and a Revised Time Delay for the Gravitational Lens System Quasar HE 1104-1805

    Get PDF
    The mid-IR flux ratios F_A/F_B = 2.84 +/- 0.06 of the two images of the gravitationally lensed quasar HE 1104-1805 show no wavelength dependence to within 3% across 3.6-8.0 um, no time dependence over 6 months and agree with the broad emission line flux ratios. This indicates that the mid-IR emission likely comes from scales large enough to be little affected by microlensing and that there is little differential extinction between the images. We measure a revised time-delay between these two images of 152.2 +2.8-3.0 days from R and V-band data covering 1997 to 2006. This time-delay indicates that the lens has an approximately flat rotation curve over scales of 1-2 R_e. We also observed uncorrelated variations of ~0.05 mag/yr which we attribute to microlensing of the optical emission from the accretion disk. The optical colors have also changed significantly in the sense that image A is now redder than image B, rather than bluer as it was in 1993.Comment: 26 page, 6 figures; this version corrects table 1 which reported incorrect IRAC magnitudes; this change does not affect any result

    A Robust Determination of the size of quasar accretion disks using gravitational microlensing

    Full text link
    Using microlensing measurements from a sample of 27 image-pairs of 19 lensed quasars we determine a maximum likelihood estimate for the accretion disk size of an {{\em}average} quasar of rs=4.0−3.1+2.4r_s=4.0^{+2.4}_{-3.1} light days at rest frame =1736=1736\AA\ for microlenses with a mean mass of =0.3M⊙=0.3M_\odot. This value, in good agreement with previous results from smaller samples, is roughly a factor of 5 greater than the predictions of the standard thin disk model. The individual size estimates for the 19 quasars in our sample are also in excellent agreement with the results of the joint maximum likelihood analysis.Comment: 6 pages, 3 figures, submitted to Ap

    Electronic shielding by closed shells in salts of thulium

    Get PDF
    Electronic shielding by closed electron shells has been investigated in salts of trivalent thulium, by measuring the temperature dependence of the nuclear quadrupole splitting of the 8.42-keV gamma transition in Tm169. The measurements were performed by using the technique of recoilless nuclear resonance absorption. The nuclear quadrupole interaction was studied for Tm3+ ions in thulium ethyl sulfate, thulium oxide, and thulium trifluoride within a temperature range from 9.6 to 1970°K. The interpretation of the experimental data in terms of the contributions of distorted closed electron shells to the quadrupole interaction yields values for electronic shielding factors. The results lead to amounts of 10% or less for the atomic Sternheimer factor RQ. The experiments also reveal substantial shielding of the 4f electrons from the crystal electric field, expressed by the shielding factor σ2. Values of 250 and 130 are obtained for the ratio (1-γ∞)/(1-σ2) for thulium ethyl sulfate and thulium oxide, respectively, where γ∞ is the lattice Sternheimer factor

    Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus

    Get PDF
    2D and 3D cryo-electron microscopy, together with adsorption kinetics assays of ϕCb13 and ϕCbK phage-infected Caulobacter crescentus, provides insight into the mechanisms of infection. ϕCb13 and ϕCbK actively interact with the flagellum and subsequently attach to receptors on the cell pole. We present evidence that the first interaction of the phage with the bacterial flagellum takes place through a filament on the phage head. This contact with the flagellum facilitates concentration of phage particles around the receptor (i.e., the pilus portals) on the bacterial cell surface, thereby increasing the likelihood of infection. Phage head filaments have not been well characterized and their function is described here. Phage head filaments may systematically underlie the initial interactions of phages with their hosts in other systems and possibly represent a widespread mechanism of efficient phage propagation

    Detection of chromatic microlensing in Q 2237+0305 A

    Full text link
    We present narrowband images of the gravitational lens system Q~2237+0305 made with the Nordic Optical Telescope in eight different filters covering the wavelength interval 3510-8130 \AA. Using point-spread function photometry fitting we have derived the difference in magnitude versus wavelength between the four images of Q~2237+0305. At λ=4110\lambda=4110 \AA, the wavelength range covered by the Str\"omgren-v filter coincides with the position and width of the CIV emission line. This allows us to determine the existence of microlensing in the continuum and not in the emission lines for two images of the quasar. Moreover, the brightness of image A shows a significant variation with wavelength which can only be explained as consequence of chromatic microlensing. To perform a complete analysis of this chromatic event our observations were used together with Optical Gravitational Lensing Experiment light curves. Both data sets cannot be reproduced by the simple phenomenology described under the caustic crossing approximation; using more realistic representations of microlensing at high optical depth, we found solutions consistent with simple thin disk models (rs∝λ4/3r_{s}\varpropto \lambda^{4/3}); however, other accretion disk size-wavelength relationships also lead to good solutions. New chromatic events from the ongoing narrow band photometric monitoring of Q~2237+0305 are needed to accurately constrain the physical properties of the accretion disk for this system.Comment: 9 pages, 9 figures, 2 tables. Matches ApJ published version. Some references adde

    Measuring Microlensing using Spectra of Multiply Lensed Quasars

    Full text link
    We report on a program of spectroscopic observations of gravitationally-lensed QSOs with multiple images. We seek to establish whether microlensing is occurring in each QSO image using only single-epoch observations. We calculate flux ratios for the cores of emission lines in image pairs to set a baseline for no microlensing. The offset of the continuum flux ratios relative to this baseline yields the microlensing magnification free from extinction, as extinction affects the continuum and the lines equally. When we find chromatic microlensing, we attempt to constrain the size of the QSO accretion disk. SDSSJ1004+4112 and HE1104-1805 show chromatic microlensing with amplitudes 0.2<∣Δm∣<0.60.2< |\Delta m| < 0.6 and 0.2<∣Δm∣<0.40.2< |\Delta m| < 0.4 mag, respectively. Modeling the accretion disk with a Gaussian source (I∝exp⁥(−R2/2rs2)I\propto \exp(-R^2/2r_s^2)) of size rs∝λpr_s\propto \lambda^p and using magnification maps to simulate microlensing we find rs(λ3363)=7±3light−days(18.1±7.8×1015cmr_s(\lambda 3363)=7\pm3 light-days (18.1\pm7.8 \times 10^{15} cm) and p=1.1±0.4p=1.1\pm 0.4 for SDSS1004+4112, and rs(λ3363)=6±2light−days(15.5±5.2×1015cmr_s(\lambda 3363)=6\pm2 light-days (15.5\pm5.2 \times 10^{15} cm) and p=0.7±0.1p=0.7\pm0.1 for HE1104-1805. For SDSSJ1029+2623 we find strong chromaticity of ∌0.4\sim 0.4 mag in the continuum flux ratio, which probably arises from microlensing although not all the available data fit within this explanation. For Q0957+561 we measure B-A magnitude differences of 0.4 mag, much greater than the ∌\sim0.05 mag amplitude usually inferred from lightcurve variability. It may substantially modify the current interpretations of microlensing in this system, likely favoring the hypothesis of smaller sources and/or larger microdeflectors. For HS0818+1227, our data yield posible evidence of microlensing.Comment: 45pp, 17figs, ApJ accepted (june 4th 2012

    A Two-Year Time Delay for the Lensed Quasar SDSS J1029+2623

    Full text link
    We present 279 epochs of optical monitoring data spanning 5.4 years from 2007 January to 2012 June for the largest image separation (22.6 arcsec) gravitationally lensed quasar, SDSS J1029+2623. We find that image A leads the images B and C by dt_AB = (744+-10) days (90% confidence); the uncertainty includes both statistical uncertainties and systematic differences due to the choice of models. With only a ~1% fractional error, the interpretation of the delay is limited primarily by cosmic variance due to fluctuations in the mean line-of-sight density. We cannot separate the fainter image C from image B, but since image C trails image B by only 2-3 days in all models, the estimate of the time delay between image A and B is little affected by combining the fluxes of images B and C. There is weak evidence for a low level of microlensing, perhaps created by the small galaxy responsible for the flux ratio anomaly in this system. Interpreting the delay depends on better constraining the shape of the gravitational potential using the lensed host galaxy, other lensed arcs and the structure of the X-ray emission.Comment: Accepted for publication in The Astrophysical Journal. Changes in response to referee's comment

    Virginia

    Full text link

    Time delays for 11 gravitationally lensed quasars revisited

    Full text link
    We test the robustness of published time delays for 11 lensed quasars by using two techniques to measure time shifts in their light curves. We chose to use two fundamentally different techniques to determine time delays in gravitationally lensed quasars: a method based on fitting a numerical model and another one derived from the minimum dispersion method introduced by Pelt and collaborators. To analyse our sample in a homogeneous way and avoid bias caused by the choice of the method used, we apply both methods to 11 different lensed systems for which delays have been published: JVAS B0218+357, SBS 0909+523, RX J0911+0551, FBQS J0951+2635, HE 1104-1805, PG 1115+080, JVAS B1422+231, SBS 1520+530, CLASS B1600+434, CLASS B1608+656, and HE 2149-2745 Time delays for three double lenses, JVAS B0218+357, HE 1104-1805, and CLASS B1600+434, as well as the quadruply lensed quasar CLASS B1608+656 are confirmed within the error bars. We correct the delay for SBS 1520+530. For PG 1115+080 and RX J0911+0551, the existence of a second solution on top of the published delay is revealed. The time delays in four systems, SBS 0909+523, FBQS J0951+2635, JVAS B1422+231, and HE 2149-2745 prove to be less reliable than previously claimed. If we wish to derive an estimate of H_0 based on time delays in gravitationally lensed quasars, we need to obtain more robust light curves for most of these systems in order to achieve a higher accuracy and robustness on the time delays
    • 

    corecore