1,205 research outputs found

    Kairomones: Finding the fish factor

    No full text
    The water flea Daphnia moves to deeper waters to avoid predators when it detects a chemical produced by fish

    Associated bacteria affect sexual reproduction by altering gene expression and metabolic processes in a biofilm inhabiting diatom

    Get PDF
    Diatoms are unicellular algae with a fundamental role in global biogeochemical cycles as major primary producers at the base of aquatic food webs. In recent years, chemical communication between diatoms and associated bacteria has emerged as a key factor in diatom ecology, spurred by conceptual and technological advancements to study the mechanisms underlying these interactions. Here, we use a combination of physiological, transcriptomic, and metabolomic approaches to study the influence of naturally coexisting bacteria, Maribacter sp. and Roseovarius sp., on the sexual reproduction of the biofilm inhabiting marine pennate diatom Seminavis robusta. While Maribacter sp. severely reduces the reproductive success of S. robusta cultures, Roseovarius sp. slightly enhances it. Contrary to our expectation, we demonstrate that the effect of the bacterial exudates is not caused by altered cell-cycle regulation prior to the switch to meiosis. Instead, Maribacter sp. exudates cause a reduced production of diproline, the sexual attraction pheromone of S. robusta. Transcriptomic analyses show that this is likely an indirect consequence of altered intracellular metabolic fluxes in the diatom, especially those related to amino acid biosynthesis, oxidative stress response, and biosynthesis of defense molecules. This study provides the first insights into the influence of bacteria on diatom sexual reproduction and adds a new dimension to the complexity of a still understudied phenomenon in natural diatom populations

    The potential role of wound-activated volatile release in the chemical defence of the brown alga Dictyota dichotoma: Blend recognition by marine herbivores

    Get PDF
    Abstract.: The chemical defence potential against herbivores of certain Dictyotalean brown algae increases after tissue disruption. This wound activated defence has been explored in bioassays, but the metabolic pathways behind it are unknown. Here we describe a metabolic profiling approach to identify the activated defence metabolites. Before and after tissue damage of Dictyota dichotoma modified diterpenes, non-volatile medium polar metabolites as well as volatile compounds were profiled. While comparison of extracted intact and mechanically wounded algae revealed no significant differences in structure and distribution of semi-volatile and reversed phase LC/MS detectable metabolites, a strong release of gaseous volatiles was observed. Solid phase micro extraction (SPME) and GC/MS were used for identification and quantification of these biogenic gases. This showed that D. dichotoma released elevated amounts of trimethylamine (TMA) and dimethylsulphide (DMS) after mechanical tissue damage. To study the ecological significance of compounds released post injury and of the biosynthetically connected non-volatile acrylate, choice assays were performed with the amphipod Amphithoe longimana. Behavioural assays on artificial diets did not reveal any repellent role for the single isolated metabolites. In strong contrast, a mixture of TMA, DMS and acrylate significantly reduced the association of the herbivores with the treated food pellets.This shows that mixtures of these biogenic gases and acrylate are recognized by the herbivores and influence food selectio

    No Evidence for the Induction of Brown Algal Chemical Defense by the Phytohormones Jasmonic Acid and Methyl Jasmonate

    Get PDF
    Induced chemical defense reactions are widespread in marine brown algae. Despite the evidence that the biosynthesis of defense metabolites can be up-regulated upon herbivory, we do not know how this regulation of biosynthetic pathways to secondary metabolites is achieved in brown algae. In higher plants, the phytohormone jasmonic acid (JA) is crucial for the mediation of induced chemical defenses, and several findings of this metabolite from marine sources have been reported. We tested the hypothesis that JA or related metabolites play a role in induced brown algal defense. Quantification of oxylipins with a detection limit around 20ng g−1 algal tissue did not reveal the presence of JA in the seven examined brown algal species Dictyota dichotoma, Colpomenia peregrina, Ectocarpus fasciculatus, Fucus vesiculosus, Himanthalia elongata, Saccharina latissima (formerly Laminaria saccharina), and Sargassum muticum. Moreover, treatment with ecologically relevant concentrations of JA and methyl jasmonate did not lead to a significant change in the profile of medium- and non-polar metabolites of the tested algae. Only when high concentrations of ≥500μg ml−1 medium of the phytohormones were applied that a metabolic response which could be attributed to unspecific stress was observed. Bioassays with D. dichotoma that focused on medium- and non-polar compounds confirmed the lack of a biological role of JA and methyl jasmonate in the induction of algal induced chemical defenses. The phytohormone-treated samples did not exhibit any increased defense potential towards the amphipod Ampithoe longimana and the isopod Paracerceis caudata. JA and related phytohormones, known to be active in higher plants, thus appear to play no role in brown algae for induction of the defense chemicals studied her

    Selective silicate-directed motility in diatoms

    Get PDF
    Diatoms are highly abundant unicellular algae that often dominate pelagic as well as benthic primary production in the oceans and inland waters. Being strictly dependent on silica to build their biomineralized cell walls, marine diatoms precipitate 240 × 1012 mol Si per year, which makes them the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability frequently limits diatom productivity and influences species composition of communities. We show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi. Cell speed increases under dSi-limited conditions in a chemokinetic response and, if gradients of this resource are present, increased directionality of cell movement promotes chemotaxis. The ability to exploit local and short-lived dSi hotspots using a specific search behaviour likely contributes to micro-scale patch dynamics in biofilm communities. On a global scale this behaviour might affect sediment–water dSi fluxes and biogeochemical cycling

    Ectoine from bacterial and algal origin is a compatible solute in microalgae

    Get PDF
    Osmoregulation in phytoplankton is attributed to several highly polar low-molecular-weight metabolites. A widely accepted model considers dimethylsulfoniopropionate (DMSP) as the most important and abundant osmotically active metabolite. Using an optimized procedure for the extraction and detection of highly polar metabolites, we expand the group of phytoplankton osmolytes by identifying ectoine in several microalgae. Ectoine is known as a bacterial compatible solute, but, to the best of our knowledge, was never considered as a phytoplankton-derived product. Given the ability of microalgae to take up zwitterions, such as DMSP, we tested the hypothesis that the algal ectoine is derived from associated bacteria. We therefore analyzed methanol extracts of xenic and axenic cultures of two different species of microalgae and could detect elevated concentrations of ectoine in those that harbor associated bacteria. However, also microalgae without an associated microbiome contain ectoine in smaller amounts, pointing towards a dual origin of this metabolite in the algae from their own biosynthesis as well as from uptake. We also tested the role of ectoine in the osmoadaptation of microalgae. In the model diatoms Thalassiosira weissflogii and Phaeodactylum tricornutum, elevated amounts of ectoine were found when cultivated in seawater with salinities of 50 PSU compared to the standard culture conditions of 35 PSU. Therefore, we add ectoine to the family of osmoadaptive metabolites in phytoplankton and prove a new, potentially synergistic metabolic interplay of bacteria and algae

    Successful invaders are better defended: The example of Gracilaria vermiculophylla

    Get PDF
    To evaluate the importance of anti-herbivore resistance for algal invasion success we compared resistance traits among specimens of the red macroalga Gracilaria vermiculophylla from six native populations in Korea and China and eight invasive populations in Europe and Mexico that were maintained under identical conditions in the laboratory. Herbivorous snails both from the native range (Littorina brevicula) and from the invaded range (Littorina littorea) consumed significantly less of seaweed specimens originating from non-native populations. Metabolome profiling revealed that this preference was correlated with an increased woundactivated production of deterring prostaglandins and hydroxyeicosatetraenoic acids. Thus, invasive populations of G. vermiculophylla are more strongly defended against challenge by herbivores and other biological enemies that cause local tissue or cell disruption and activate oxylipin production. Anthropogenic distribution of genotypes adapted to resist elevated feeding pressure probably contributed to the invasion success of this species

    Defence Chemistry Modulation by Light and Temperature Shifts and the Resulting Effects on Associated Epibacteria of Fucus vesiculosus

    Get PDF
    The goals of this study were (1) to investigate whether Fucus vesiculosus regulates the production of its antifouling defence chemicals against epibacteria in response to light limitation and temperature shifts and (2) to investigate if different surface concentrations of defence compounds shape epibacterial communities. F. vesiculosus was incubated in indoor mesocosms at five different temperature conditions (5 to 25°C) and in outdoor mesocosms under six differently reduced sunlight conditions (0 to 100%), respectively. Algal surface concentrations of previously identified antifouling compounds - dimethylsulphopropionate (DMSP), fucoxanthin and proline – were determined and the bacterial community composition was characterized by in-depth sequencing of the 16S-rRNA gene. Altogether, the effect of different treatment levels upon defence compound concentrations was limited. Under all conditions DMSP alone appeared to be sufficiently concentrated to warrant for at least a partial inhibitory action against epibiotic bacteria of F. vesiculosus. In contrast, proline and fucoxanthin rarely reached the necessary concentration ranges for self-contained inhibition. Nonetheless, in both experiments along with the direct influence of temperature and light, all three compounds apparently affected the overall bacterial community composition associated with F. vesiculosus since tendencies for insensitivity towards all three compounds were observed among bacterial taxa that typically dominate those communities. Given that the concentrations of at least one of the compounds (in most cases DMSP) were always high enough to inhibit bacterial settlement, we conclude that the capacity of F. vesiculosus for such defence will hardly be compromised by shading or warming to temperatures up to 25°C
    corecore