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Selective silicate-directed motility in diatoms
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Diatoms are highly abundant unicellular algae that often dominate pelagic as well as benthic

primary production in the oceans and inland waters. Being strictly dependent on silica to build

their biomineralized cell walls, marine diatoms precipitate 240� 1012 mol Si per year, which

makes them the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability

frequently limits diatom productivity and influences species composition of communities. We

show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi.

Cell speed increases under dSi-limited conditions in a chemokinetic response and, if gradients

of this resource are present, increased directionality of cell movement promotes chemotaxis.

The ability to exploit local and short-lived dSi hotspots using a specific search behaviour likely

contributes to micro-scale patch dynamics in biofilm communities. On a global scale this

behaviour might affect sediment–water dSi fluxes and biogeochemical cycling.
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3 Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund Slot, Jægersborg Allé, DK-2920
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D
iatoms contribute about 20% to the global primary
production and are key players in marine and freshwater
benthic and planktonic communities1. A hallmark of

diatom physiology is their biomineralized cell wall that is formed
by template-catalysed precipitation of silicic acid2. Given their
vast abundance, diatoms are thereby driving the silicate cycle3,4.
Dissolved silicic acid (dSi) availability is often the limiting factor
controlling diatom growth and thus also shaping species
composition in marine communities5. While the pelagic zone is
often dSi-limited below 1 mM, the benthic zone typically shows
strong and steep gradients of this resource with higher dSi
concentrations (around 150 mM) in the sediment due to the
continuous dissolution of deposited minerals6. Because of their
high productivity and biomineralization activity, benthic diatom
biofilms can influence sediment properties7 and alter dSi fluxes
within the sediment–water interface, thus regulating dSi
concentrations in the oceans8. Such processes have implications
for the transfer of energy to higher trophic levels, bentho-pelagic
coupling and hence population and ecosystem productivity4.
Most benthic diatoms belong to the pennates, comprising the
youngest (90 Myr old) yet most species-rich clade within the
diatoms9,10. Many species evolved a strong capacity for vertical
migration in sediments under the control of photoperiod and/or
tidal cycles11. However, these processes alone are not fully
explaining observed spatiotemporal dynamics of microbial
biofilms, and since many years other factors including the
direct and indirect influence of herbivory and microbe–microbe
interactions are assumed to guide diatom movement11–13. Here
we identify an additional guiding factor by showing that diatoms
detect and actively move towards dSi sources.

We used the pennate diatom Seminavis robusta to explore cell
movement and aggregation in response to dSi. Like many other
pennate diatoms, this biofilm-forming species moves by gliding
through the excretion of extracellular polymeric substances from
its raphe, an elongate slit in the cell wall14. This allows pennate
diatoms to move back and forth. Observed turning movements
were suggested to result from the action of extracellular polymeric
substance-derived pseudopods or stalks. When a pseudopod or
stalk is adhering to the substratum resulting torque supports the
whole-cell rotation15. In this contribution, we describe three sets
of experiments where we first look at the general influence of dSi
concentration on diatom motility, then we observe and analyse
diatom behaviour in a dSi gradient and last, we test the specificity
of the response by comparing the reaction towards dSi and dGe
gradients. These experiments clearly demonstrate that diatoms
have means to selectively perceive and orient towards the
essential resource dSi. A search behaviour in form of increased
cell motility and cell speed is observed when the nutrient dSi is
depleted. The unicellular algae are also capable of directional
movement towards the sources of dSi gradients, a behaviour that
supports foraging in the patchy natural environment of benthic
diatoms. The fact that structurally closely related dissolved
germanium dioxide (Ge(OH)4, dGe) sources are not eliciting
attraction suggests a specific receptor-mediated response.

Results
dSi-dependent diatom motility and speed. To determine if dSi
availability affects cell behaviour, we counted motile cells in
conjunction with dSi depletion in batch cultures. The proportion
of motile cells steeply increased along with decreasing dSi avail-
ability as cells entered the stationary growth phase (Fig. 1a).
Addition of dSi (106 mM) to stationary-phase cultures elicited
within 1 h a marked drop in the proportion of motile cells,
indicating a reversible reaction controlled by dSi (Fig. 1b). In
addition to motility, cell speed is also dependent on dSi

concentration. When stationary-phase S. robusta cultures were
transferred to artificial sea water without added dSi (low-dSi
medium) and were further starved for 3 days, cell movement was
more than twice as fast than that of cells transferred to dSi-rich
control medium (Fig. 1c). Moreover, cell speed decreased after 1 h
of dSi addition while blank addition did not affect the speed. The
observed increased proportion of motile cells and higher speed
under limiting conditions is a chemokinetic response, that is, a
motile response to chemicals. Since dSi is not required for
movement, speeding up is an effective mechanism for fast
location of this limiting resource during starvation16,17.

Directed movement towards dSi sources. Since steep vertical
and horizontal dSi gradients prevail in benthic environments, an
additional strategy to exploit this resource would be a directed
movement within dSi gradients. Requirements for such a
behaviour are the cells’ ability to perceive the resource in a
quantitative manner, as described above, and a directed move-
ment towards it. Track analysis revealed that S. robusta moves in
a back and forth manner that enables cells to reverse direction
after each stop (Supplementary Movie 1). This behaviour
found in many raphid diatoms and in certain bacteria allows
for orientation towards higher concentrations in chemical
gradients18,19. S. robusta thus fulfils both above-mentioned
requirements for a directed movement. We therefore verified if
it indeed has the capability of chemotaxis that would lead to the
accumulation of Si-starved cells at local dSi hotspots. Gradients of
dSi were generated from micrometer-sized point sources in form
of aluminium oxide (alox) beads that were loaded with dSi in
different concentrations. To analyse movement along the dSi
concentration gradient, the microscopic observation area was
divided into three bins (A–C) of equidistant concentric rings
around each observed bead covering a radius of 336 mm (Fig. 2a).
Since a directed orientation would likely be most relevant under
low dSi concentrations found at the water–sediment interface,
we aimed to adjust the local concentration gradient in this range.
If 1.4 nmol dSi per microscopic bead were applied, ca. 5% diffused
out within the 600 s assay period. In a matter of B460 s a
concentration gradient is established with B100 mM dSi at the
surface of the bead decreasing to B5 mM dSi at the edges of the
microscopic observation field (Supplementary Fig. 1). This
concentration gradient mimics conditions at the transition of
the pelagic and benthic zones6. Si-starved S. robusta responded to
such dSi gradients with an accumulation of cells around the
beads while control beads were not attractive (Fig. 2). This
behavioural response is observed in different S. robusta isolates
(Supplementary Movies 2–5). If the observation period is
extended to 1 h, continuous movement of cells towards the
bead is observed until B25 min. After that, chemoattraction
becomes less obvious, presumably due to diffusion of dSi. Control
beads are not active through the entire assay period
(Supplementary Movies 2 and 4). Response to dSi is not limited
to S. robusta, since Navicula sp., another benthic diatom, also
accumulated around dSi sources (Supplementary Movie 6). The
administered dSi concentration is in the optimum range to elicit a
response. Attraction became less pronounced if lower
concentrations of dSi were administered, higher concentrations
still resulted in a substantial accumulation around the beads
but data became noisier, indicating a more erratic search
(Supplementary Fig. 2). Such a concentration-dependent
response is typical for receptor-mediated interactions, since
higher concentrations of dSi on the beads might cause receptor
saturation, whereas lower concentrations fall below the detection
limit20. The finding capability is thus most efficient in an
environmentally relevant concentration range.
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The fact that starved cells accumulate in the immediate vicinity
of the bead suggests that they sense local dSi concentrations and
direct their movement up the gradient and ultimately to the
source. Surprisingly, the mean swimming speed of cells exposed
to a dSi gradient was higher in the close proximity of the beads
(Fig. 3a and Supplementary Fig. 3). This only holds true under the
influence of the steep dSi gradient in the immediate proximity of
the beads and is already not manifested any more in the more
distant bin C (Supplementary Fig. 3). While cells generally move
faster when starved of dSi (Fig. 1c), it is apparent that an
additional response to a steep gradient of dSi is observed. The
defined dSi source in an otherwise limited environment causes
locally increased speed, which could be the cell’s mechanism to
avoid diffusion limitation during Si uptake around a dSi hotspot.

Analysis of movement. The mode of orientation within the dSi
gradient was verified in detail by fitting the Taylor’s equation21 to
analyse the swimming characteristics based on tracking individual
cell behaviour in response to dSi-loaded and control beads
(details in Methods section). S. robusta cells have higher
directional persistence when perceiving an ascending dSi
gradient, as exemplified by longer correlation length and
timescales (l and t) (Table 1). Cells within the dSi gradient
also had on average a 57% higher diffusivity (D) and 81% higher
encounter kernel (b) for the dSi beads, showing that they
maximize their encounter rate to find dSi beads. Analysis of the
angular orientation by monitoring the angle of the vectorized
tracks relative to the bead centre did not reveal any differences
between control and Si-loaded beads, thereby excluding a directed
orientation during reversing events (Fig. 3b). However, cells
persistently migrate towards the dSi source as indicated by the
change in the sum of distances between bead and all cells over
time in the treatment compared with the control (Fig. 3c). The
observed behaviour can be explained by a preferential forward
movement in an ascending gradient of dSi. This directionality
during the chemokinetic response thus promotes chemotaxis. The
persistent orientation implies a biased random walk, wherein cells
adapt their movement patterns to find a dSi source.

Selectivity of the directed response. To learn more about the
selectivity of the response to dissolved minerals we determined

how Si-starved cells react to dGe sources. dGe and dSi share
very similar chemical properties. Ge uptake and incorporation
instead of Si in diatom frustules inhibits growth and
causes morphological aberrations and toxicity22,23. When we
administered dGe-loaded beads (1.4 nmol per bead) to
dSi-starved cultures, a negative response was elicited as cells in
average moved away from the dGe sources. In contrast,
dSi-loaded beads were attractive, and near constant cell
densities were observed around control treatments (Fig. 4 and
Supplementary Fig. 4). S. robusta thus discriminates between the
two very similar inorganic resources. This remarkably specific
behavioural response combined with discrimination of the
elements during uptake24 represents an efficient mechanism to
protect the cells against Ge toxicity.

Discussion
Our results clearly indicate the specific modulation of foraging
behaviour of benthic diatoms in response to silicate. A detailed
analysis of movement indicates a chemokinetic response since cell
speed changes in dependence of dSi concentrations. In addition
the observed attraction of cells within a gradient of dSi indicates a
chemotactic search capability. Interestingly this search behaviour
is not regulated by directed turns of the cells towards the dSi
source but rather by a longer directional persistence within an
ascending dSi gradient. This finding mechanism thus differs from
the chemoattraction mechanism in brown algae where the
pheromone-directed movement is mediated by signal molecule-
induced turning events of gametes25. Such orientation towards
dSi or any other dissolved mineral has to our knowledge not been
observed before in diatoms. The specificity of the attraction is
demonstrated by a selective movement towards dSi while the
structurally closely related dGe does not stimulate an attraction
response. These observations might be explained by a receptor-
mediated process20, but until now no candidate receptor
mediating a specific recognition of dissolved minerals is known.
Since different isolates of S. robusta as well as another tested
diatom species Navicula sp. exhibit this search behaviour, the
response might be general for benthic diatoms. The observed
dSi-directed movement might thus help to explain the
often patchy species composition and structure of marine
biofilms.
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Figure 1 | Seminavis robusta cell motility is modulated by environmental silicic acid concentrations. (a) During silicon (Si)-limited batch culture growth,

cell motility increases while dSi (100% dSi¼ 106mM) is being depleted and the culture enters stationary phase. Error bars show the s.e.m. of five replicates

(n¼ 300). (b) There is a higher percentage of motile cells in low-Si medium than Si-rich medium (one-way analysis of variance (ANOVA), n¼ 5,

Po0.001). After addition of dSi (106 mM) to 48-h silicon-starved cultures, cell motility drops within 1 h (one-way ANOVA, n¼ 3, Po0.0001). This is not

the case after a blank addition of sea water to such silicon-starved cultures (P¼ 1.00). Error bars show s.e.m. of three replicates. (c) The mean cell speed is

significantly higher (LME with Tukey’s honest significance difference (HSD) test, n¼ 70–200 cells per movie, three movies analysed, Po0.0001) in

cultures grown in low-dSi medium compared with dSi-rich medium (dSi¼ 246mM). One hour after the addition of dSi to starved cultures, cell speed

significantly dropped (LME with Tukey’s HSD, n¼ 70–200 cells per movie, three movies analysed, Po0.0001) while blank addition did not induce any

change on cell behaviour (LME with Tukey’s HSD, n¼ 70–200 cells per movie, three movies analysed, P¼0.665,). Error bars show s.e.m. of all tracked cells

from three 60-s movies.
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Tactic behaviour towards nutrient sources such as phosphate
and different sources of nitrogen has been demonstrated for other
algae and bacteria26,27. These responses can provide important
adaptive advantage for the organisms due to increased acquisition
capability for the resources16,17. The ability of motile diatoms to
trace dSi gradients and exploit micro-scale hotspots by changing
their foraging behaviour enables them to thrive and dominate
phototrophic biofilm communities such as the intertidal
microphytobenthos. More general, this capability might be a
key factor explaining their explosive radiation in marine and
freshwater benthos.

Microbial activity is known to greatly affect global biogeo-
chemical processes involved in the cycling of elements28–30.
Several mechanisms have been suggested on how microbial
behavioural responses to patchy resources can influence ocean
biogeochemistry31. The ability of diatoms to track dSi availability
in the environment has thus implications on a global scale by
affecting dSi fluxes and on a micro-scale by shaping biofilm
communities.

Methods
Cultures. We used the S. robusta strains F2-31B and P36 MTþ maintained
cryopreserved in the BCCM/DCG diatom culture collection at Ghent University

(http://bccm.belspo.be/about-us/bccm-dcg)20. Navicula sp. was isolated from a
mudflat at Solana Beach, California 32� 580 37.50 0 N 117� 160 08.80 0 W. For both
species, cells were grown in batch culture20 either with natural sea water and F/2
medium32 or artificial, buffered sea water (ASW) prepared as described by Maier &
Calenberg33 to avoid overlaying effects of pH changes due to the treatments. In
low-dSi treatments no dSi was added while high-dSi treatments were supplemented
with 106 mM dSi for F/2 medium and 246 mM dSi for ASW. Experimental cultures
were prepared by 10-fold dilution of aliquot of stock cultures using fresh culture
medium and then grown in tissue culture flasks with standard caps, Petri or well
plates (Greiner Bio-One, Frickenhausen, Germany). Observations, cell culture
photography and video recording were done on an Leica DM IL LED inverted light
microscope with a Leica DFC 280 camera system (Heerbrugg, Switzerland).

Preparation of dSi- or dGe-loaded aluminium oxide particles. Aluminium oxide
(100 mg alox, Merck, Darmstadt, Germany; 90 active neutral; 0.063–0.200 mm
particle diameter) was used to adsorb silicate by fully evaporating (overnight
at 50–90 �C) 800 ml freshly prepared sodium silicate solution (440 mM
Na2SiO3 � 9H2O; Sigma-Aldrich, Deisenhofen, Germany) or germanium dioxide
solution (440 mM GeO2; Alfa Aesar, Karlsruhe, Germany). To determine the most
effective concentration of dSi, 50, 800 and 1,270 ml silicate stock were added to
100 mg alox and evaporated, resulting in B0.088, 1.40 and 2.23 nmol dSi per
particle, respectively (Supplementary Fig. 2 and Supplementary Table 7). For all
succeeding experiments, the concentration 1.40 nmol per particle was used for both
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dSi and dGe treatments. Blank alox particles for control treatments were identically
prepared by evaporation of bi-distilled water. The amount of alox particles per unit
weight was determined by counting the number of particles within 10 mg alox
beads on tissue culture plates. We counted three randomly chosen microscopic
fields (area of each field¼ 5.6 mm2) from microscopic photographs. On average
2,640 (±660) particles were present per mg alox.

Determination of dSi diffusing from the bead. To determine the total flux of dSi
diffusing from the bead (i), dSi was quantified in water exposed to Si-loaded or
control beads after 600 s by standard colorimetric methods34. The steady-state
concentration of dSi was calculated from the initial concentration on the
particle using the formula18 C(r)¼ i/4pOrD, where i is the total diffusive flux of dSi,
r is the radius where dSi diffused, and D is the diffusivity constant for dSi
(10� 5 cm2 s� 1)35. Time to steady state was determined as the time Zd2/D
where d is the diameter of the whole observation area (672 mm). The Or
was used to correct the shape of a gradient in a flat chamber36. The i
(1.21� 13±1.01� 14 mol s� 1) was substituted in the equation and the steady-state
C was calculated based on the distance (radius) from the bead r. A plot showing
steady-state concentration of dSi against distance can be found in Supplementary
Fig. 1.

Data processing. The open-source software Fiji (http://fiji.sc/Fiji)37 with the plug-
ins Cell Counter and TrackMate (http://fiji.sc/TrackMate) was used for cell
counting and tracking, respectively. All data analyses were done using the
open-source statistical and graphic software R version 3.0.3 (http://www.
R-project.org/)38.

Motility and speed of S. robusta controlled by dSi. For the experiment in
Fig. 1a, replicate cultures were grown in Petri dishes (Greiner Bio-One;
60� 15 mm) in F/2 medium as described above. Five cultures were used for density
and proportion of motile cells determinations, performed B9 h after the onset of
light. In addition, the medium was collected from one more replicate culture each
day, by filtration over a 0.2-mm pore size filter and frozen until analysis for silicate
content. Dissolved silicate was measured on a spectrophotometer using the
molybdosilicate method39. For Fig 1b,c, cultures were grown on tissue culture flasks
(75 cm2 growth surface; filter caps) in 20 ml growth medium with three replicates
for each condition. Cultures were grown for 3 days in F/2 medium (106 mM dSi,
Fig. 1b) and 7 days in dSi-enriched ASW (246 mM dSi, Fig. 1c). For Fig. 1b, at the
beginning of the light period on day 4, the supernatant growth medium was
replaced by careful aspiration with a Pasteur pipette attached to a water pump,
immediately followed by the addition of ASW with 246 mM dSi or without dSi
enrichment. Further culturing was performed for 48 h in continuous light to avoid
interference of light–dark alterations on cell motility. Proportion of motile cells was
assessed by overlaying two photographs taken at a 15-s interval from the same
observation field. Cells (n4300) located at the exact same position in both
photographs were counted as immotile; others were counted as motile. Cell
densities were microscopically estimated by counting cells in at least 35 observation
fields with an area of 0.993 mm2. The percentage of motile cells was compared
before and after addition of dSi (106 mM) or addition of blank artificial sea water
without added dSi to cultures grown for 48 h in low-dSi or dSi-rich medium
(one-way analysis of variance, Fig. 1b). For Fig. 1c, cell speeds of starved and
non-starved cells with addition of bulk dSi (246 mM) or blank addition of artificial
sea water without added dSi were assessed by tracking cells from 60-s movies.
Differences on treatments were determined by fitting the logþ 1-transformed
speed to a linear mixed effects (LME) model with unique track ID as random factor
and a constant variance function structure (varIdent) for treatment. Multiple
pairwise comparisons were done through Tukey’s honest significance difference
(HSD) test (outcome of statistical analysis is given in Supplementary Table 1).

Movement of Si-starved cells in response to dSi gradients. For all succeeding
experiments, S. robusta cultures were grown in tissue culture flasks in artificial,
buffered sea water with dSi33 until they reached stationary phase. On the seventh

day, 1 ml of cell suspension was transferred to 12-well tissue culture plates
supplemented with 2 ml low-Si medium. Normal light–dark cycle was followed for
the 3-day incubation period. Alox particles were carefully administered to each well
using a spatula, ensuring that the total number of beads per well does not exceed
30. For obtaining cell count data, photos were taken after exposure to the
beads every 60 s for 600 s. Movies for tracking were also recorded for 600 s
(1 frame per s). Cell accumulation around the particles was determined from
microscopically acquired photographs by counting the number of cells within a
circle having an area of 0.300 mm2 (for Supplementary Fig. 2) or 0.355 mm2

(Figs 2b and 3). For Figs 2b and 4, the observation area was divided into three
concentric rings, called bins (bins A–C), having a Dradius of 112mm with the alox
bead as the central point (Fig. 2a).

Modelling. A representative movie from dSi and control treatments was chosen
and cells were randomly selected to be tracked (n¼ 29 for control and 34 for dSi)
for 600 s. To analyse the track data, cell density (n), speed (mm s� 1), angular
orientation (sine angle) and distance (mm) of cells relative to the bead were taken as
parameters. Mixed models were used to analyse and fit the data to be able to
account for the nested and longitudinal design of the study. Linear modelling of
sum distance and LME modelling of cell count and angular orientation were done
using the R package nlme40 while general additive mixed modelling of cell speed
was done using the R package mgcv41. To correct correlated data between
independent variables, a correlation structure, autoregressive order 1 (AR-1) was
used. A constant variance function structure (varIdent) was also added to the
model for correcting residual spreads. Individual models for each bin were chosen
based on the Akaike information criterion. For each model, a Wald test was
performed to determine the significance of the fitted estimates on each term.
All results are shown in Supplementary Tables 2–6.

Cell counts. Cell counts were standardized according to standard Z-score
calculation per treatment: standard score Z¼ (X�m)/s, where m is mean, X is
score and s is s.d. For the starting point to be normalized to 0, we subtracted the
standardized cell count on each time point to the value at T¼ 0 s. A value of 0
indicates that the cell density is equal to the mean. Positive values indicate a cell
density higher than the mean and a negative value the opposite. To compare
control and dSi treatments (Fig. 2b and Supplementary Table 2), a model for each
bin was fitted using the interaction between treatment and time as independent
variables and replicate ID as a random factor. An AR-1 correlation structure for
successive measurements within the replicates and a varIdent variance structure for
treatment on bins A and B and replicates for bin C were added to the model.
For the comparison of substrate specificity (Fig. 4, Supplementary Fig. 4 and
Supplementary Table 6), the model for each bin was fitted the same way as
described above and a varIdent variance structure for treatment was added for
all the bins.

Cell speed. A logþ 1 transformation was used to normalize cell speed. The mean
speed of the cells every 30 s for each bin was fitted using general additive mixed
model (Fig. 3a, Supplementary Table 3 and Supplementary Fig. 3). Data for a time
point were excluded when only a single-track data contributed to the mean. The
independent variable was fitted with a simple factor smooth and penalized with
cubic regression splines of time on each treatment, and track ID (that is, unique

Table 1 | Motility parameters of cells exposed to control and
dSi beads.

Parameter Control Si

N 28 34
t (s) 4.68 14.85
l (mm) 10.70 23.86
D (mm2 s� 1) 12.22 19.17
b (mm3 s� 1) 8,200 14,900

Calculated using Taylor’s equation, where N is number of tracks, t is decorrelation timescale, l is
decorrelation length scale, D is diffusivity and b is encounter kernel (observation area: bins A–C;
observation time: 600 s).
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Figure 4 | Substrate-specific response of Si-starved cells to dSi- and

dGe-loaded (1.4 nmol per bead), and control beads. Plot of mean

normalized cell counts with overlaid LME model demonstrates avoidance of

starved cells to dGe (LME, n¼ 70–200 cells per movie, three movies

analysed, P¼0.0047) and attraction to dSi (LME, n¼ 70–200 cells per

movie, three movies analysed, P¼0.0088). Right panels show cells in bin A

in selected treatments 600 s after addition of beads (the red circle has a

radius of 112mm).
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cell ID) was assigned as a random factor. An AR-1 correlation structure between
treatment and track ID was added to the model. In addition, a varIdent structure
on treatment was used in the model to decrease the Akaike information criterion
significantly and for a better fit.

Angular orientation. To determine angular orientation, the sine angle of each
coordinate position of the cell relative to the coordinate position of the bead was
calculated42. A cell is moving towards the bead if it has a positive value and away
from it in case of a negative value. Average of the sine angles was determined per
bin every 60 s (Fig. 3b and Supplementary Table 4). Data for a time point were
excluded when only a single-track data contribute to the mean. Each bin data were
fitted via LME using the interaction between treatment and time as independent
variables and replicate ID as a random factor. An AR-1 correlation structure was
used between treatment and replicate ID as well as a varIdent variance structure for
treatment.

Sum distance. The sum of distance from each cell’s coordinate position relative to
the bead centre was used to determine the migration pattern of cells. Each bin was
fitted using a simple linear model (Fig. 3c and Supplementary Table 5) with sum
distance as the response variable and the interaction of time and treatment as
explanatory variable.

Motility parameters. To determine whether the motility characteristics between
the control and dSi treatment were different, we analysed track data from two
representative movies. Motility parameters were computed by fitting the root mean
square of the net distance as a function of time to Taylor’s equation using nonlinear
least-squares estimation21: root mean square¼ [2v2t (t� t (1� e� t/t)]0.5 where v
is effective swimming speed, t is the decorrelation timescale, t is the time and l is
decorrelation length scale: l¼ vt.

The decorrelation length (l) and timescale (t) give the distance and time,
respectively, wherein there is directional persistence in motility over a period of
600 s.

We also calculated the effective diffusivity of motility (D¼ v2t/n) and encounter
kernel (b¼ 4pRD), where n is number of dimensions and R is radius of the bead.
D describes the spread of the cell tracks and b determines the water volume
screened by cells within the observation time21.
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