9 research outputs found

    Neonatal survival and kidney function after prenatal interventions for obstructive uropathies

    Get PDF
    Objectives: Prenatal interventions in LUTO (lower urinary tract obstruction) usually are still question of a debate between gynaecologist and paediatric nephrologist. We aimed the study to assess the early survival rate and renal outcome in LUTO foetuses. Material and methods: The study was a prospective data analysis of 39 foetuses from singleton pregnancies. All pregnant women with LUTO in the foetus were qualified for VAS based on a local practice. The mean time of first urine analysis ranged between 13–30 weeks of pregnancy. Primary end-point analysis included live birth, 28d-survival, pulmonary and renal function assessment in neonatal period. Results: From initial number of 39, six patients miscarried before the procedure was performed. Overall, 33 VAS were performer at the mean 21 week of pregnancy (range 14–30 weeks). 25/39 foetuses survived until delivery. Three neonates died in first 3 days of life. In the first month 3 children required peritoneal dialysis, but at 28 day all children were dialysis-free. Overall survival rate at 28 day was 56%. Renal function preservation of the initial group (39) turned out to be low — 18% (7/39). Conclusions: Our study showed average survival curves and complications. LUTO in the foetus had mostly unfavourable outcome in the neonatal period. The prenatal intervention did not increase it significantly and did not guarantee the preservation of normal kidney function

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Computational Fluid Dynamics as an Engineering Tool for the Reconstruction of Hemodynamics after Carotid Artery Stenosis Operation: A Case Study

    No full text
    Background and objectives: Brain ischemic stroke is caused by impaired or absolutely blocked blood flow into the brain regions. Despite the large number of possible origins, there is no general strategy for preventive treatment. In this paper, we aimed to predict the hemodynamics in a patient who experienced a critical stenosis operation in the carotid artery. This is a unique study where we used medical data together with the computational fluid (CFD) technique not to plan the surgery, but to predict its outcome. Materials and Methods: AngioCT data and blood perfusion of brain tissue (CT-perfusion) together with CFD technique were applied for stroke formation reconstruction in different clinical conditions. With the use of self-made semiautomatic algorithm for image processing and 3DDoctror software, 3D-vascular geometries before and after surgical intervention were reconstructed. As the paper is focused on the analysis of stroke appearance, apparent stroke was simulated as higher and lower pressure values in the cranial part due to different outcomes of the surgical intervention. This allowed to investigate the influence of spatial configuration and pressure values on blood perfusion in the analyzed circulatory system. Results: Application of CFD simulations for blood flow reconstruction for clinical conditions in the circulatory system accomplished on average 98.5% and 98.7% accuracy for CFD results compared to US-Doppler before and after surgical intervention, respectively. Meanwhile, CFD results compared to CT-perfusion indicated an average 89.7% and 92.8% accuracy before and after surgical intervention, respectively. Thus, the CFD is a reliable approach for predicting the patient hemodynamics, as it was confirmed by postoperative data. Conclusions: Our study indicated that the application of CFD simulations for blood flow reconstruction for clinical conditions in circulatory system reached 98% and 90% accuracy for US-Doppler and CT-perfusion, respectively. Therefore, the proposed method might be used as a tool for reconstruction of specific patients&rsquo; hemodynamics after operation of critical stenosis in the carotid artery. However, further studies are necessary to confirm its usefulness in clinical practice

    Masting is uncommon in trees that depend on mutualist dispersers in the context of global climate and fertility gradients

    Get PDF
    The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands

    Masting is uncommon in trees that depend on mutualist dispersers in the context of global climate and fertility gradients

    No full text
    The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands
    corecore