11 research outputs found

    Guidelines and considerations for designing field experiments simulating precipitation extremes in forest ecosystems

    Get PDF
    1. Precipitation regimes are changing in response to climate change, yet understanding of how forest ecosystems respond to extreme droughts and pluvials remains incomplete. As future precipitation extremes will likely fall outside the range of historical variability, precipitation manipulation experiments (PMEs) are critical to advancing knowledge about potential ecosystem responses. However, few PMEs have been conducted in forests compared to short‐statured ecosystems, and forest PMEs have unique design requirements and constraints. Moreover, past forest PMEs have lacked coordination, limiting cross‐site comparisons. Here, we review and synthesize approaches, challenges, and opportunities for conducting PMEs in forests, with the goal of guiding design decisions, while maximizing the potential for coordination. 2. We reviewed 63 forest PMEs at 70 sites world‐wide. Workshops, meetings, and communications with experimentalists were used to generate and build consensus around approaches for addressing the key challenges and enhancing coordination. 3. Past forest PMEs employed a variety of study designs related to treatment level, replication, plot and infrastructure characteristics, and measurement approaches. Important considerations for establishing new forest PMEs include: selecting appropriate treatment levels to reach ecological thresholds; balancing cost, logistical complexity, and effectiveness in infrastructure design; and preventing unintended water subsidies. Response variables in forest PMEs were organized into three broad tiers reflecting increasing complexity and resource intensiveness, with the first tier representing a recommended core set of common measurements. 4. Differences in site conditions combined with unique research questions of experimentalists necessitate careful adaptation of guidelines for forest PMEs to balance local objectives with coordination among experiments. We advocate adoption of a common framework for coordinating forest PME design to enhance cross‐site comparability and advance fundamental knowledge about the response and sensitivity of diverse forest ecosystems to precipitation extremes.New Hampshire Agricultural Experiment Station, Grant/Award Number: NH00071-M; Northern States Research Cooperative, Grant/Award Number: 14-DG-11242307- 142; National Science Foundation Long-Term Ecological Research, Grant/Award Number: 1637685; USDA Forest Service; University of New Hampshire; NASA, Grant/Award Number: NNX14AD31G; USDA National Institute of Food and Agriculture McIntire- Stennis Project, Grant/Award Number: NH00071-M; U.S. Department of Energy; Office of Science’s Terrestrial Ecosystem Science program; Pacific Northwest National Labs’ LDRD program; MSCA-IF 2015; EU-Horizon2020 program; NSF’s Research Coordination Network Progra

    A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    Get PDF
    Widespread tree mortality associated with drought 92 has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function

    A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    Get PDF
    Widespread tree mortality associated with drought 92 has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function
    corecore