200 research outputs found

    The Information-Leveling Role of Voluntary Disclosure Quality in Facilitating Investment Efficiency

    Get PDF
    This study examines whether and under what conditions voluntary disclosure quality plays an information-leveling role in facilitating investment efficiency. Measuring voluntary disclosure quality as the (inverse) standard deviation of managers’ prior earnings forecast errors (i.e., management forecast consistency), we document a positive association between management forecast consistency and investment efficiency that strengthens when the information environment becomes more constrained and when there are negative shocks to financial reporting quality. We also find that the management forecast consistency/investment efficiency association strengthens when firms are younger, faster growing, and financially constrained, but not when firms are weakly governed and financially unconstrained, which suggests that voluntary disclosure quality facilitates investment efficiency by mitigating adverse selection (but not moral hazard) frictions. Last, when we employ a changes-based model, we find that increases in management forecast consistency are associated with increases in investment efficiency, which mitigates concerns that voluntary disclosure quality’s empirical link to investment efficiency is purely driven by managers’ inherent forecasting abilities. Overall, we show that voluntary disclosure quality can facilitate investment efficiency when financial reporting and other elements of the information environment are constrained in their ability to mitigate market frictions that impede efficiency

    Effectiveness of influenza vaccination in patients with end-stage renal disease receiving hemodialysis: a population-based study.

    Get PDF
    BackgroundLittle is known on the effectiveness of influenza vaccine in ESRD patients. This study compared the incidence of hospitalization, morbidity, and mortality in end-stage renal disease (ESRD) patients undergoing hemodialysis (HD) between cohorts with and without influenza vaccination.MethodsWe used the insurance claims data from 1998 to 2009 in Taiwan to determine the incidence of these events within one year after influenza vaccination in the vaccine (N = 831) and the non-vaccine (N = 3187) cohorts. The vaccine cohort to the non-vaccine cohort incidence rate ratio and hazard ratio (HR) of morbidities and mortality were measured.ResultsThe age-specific analysis showed that the elderly in the vaccine cohort had lower hospitalization rate (100.8 vs. 133.9 per 100 person-years), contributing to an overall HR of 0.81 (95% confidence interval (CI) 0.72-0.90). The vaccine cohort also had an adjusted HR of 0.85 [95% CI 0.75-0.96] for heart disease. The corresponding incidence of pneumonia and influenza was 22.4 versus 17.2 per 100 person-years, but with an adjusted HR of 0.80 (95% CI 0.64-1.02). The vaccine cohort had lowered risks than the non-vaccine cohort for intensive care unit (ICU) admission (adjusted HR 0.20, 95% CI 0.12-0.33) and mortality (adjusted HR 0.50, 95% CI 0.41-0.60). The time-dependent Cox model revealed an overall adjusted HR for mortality of 0.30 (95% CI 0.26-0.35) after counting vaccination for multi-years.ConclusionsESRD patients with HD receiving the influenza vaccination could have reduced risks of pneumonia/influenza and other morbidities, ICU stay, hospitalization and death, particularly for the elderly

    Peculiar optical properties of bilayer silicene under the influence of external electric and magnetic fields

    Full text link
    We conduct a comprehensive investigation of the effect of an applied electric field on the optical and magneto-optical absorption spectra for AB-bt (bottom-top) bilayer silicene. The generalized tightbinding model in conjunction with the Kubo formula is efficiently employed in the numerical calculations. The electronic and optical properties are greatly diversified by the buckled lattice structure, stacking configuration, intralayer and interlayer hopping interactions, spin-orbital couplings, as well as the electric and magnetic fields (Ez ˆz & Bz ˆz ). An electric field induces spin-split electronic states, a semiconductor-metal phase transitions and the Dirac cone formations in different valleys, leading to the special absorption features. The Ez-dependent low-lying Landau levels possess lower degeneracy, valley-created localization centers, peculiar distributions of quantum numbers, well-behaved and abnormal energy spectra in Bz-dependencies, and the absence of anti-crossing behavior. Consequently, the specific magneto-optical selection rules exist for diverse excitation categories under certain critical electric fields. The optical gaps are reduced as Ez is increased, but enhanced by Bz, in which the threshold channel might dramatically change in the former case. These characteristics are in sharp contrast with those for layered graphene

    Sun Tracking Systems: A Review

    Get PDF
    The output power produced by high-concentration solar thermal and photovoltaic systems is directly related to the amount of solar energy acquired by the system, and it is therefore necessary to track the sun's position with a high degree of accuracy. Many systems have been proposed to facilitate this task over the past 20 years. Accordingly, this paper commences by providing a high level overview of the sun tracking system field and then describes some of the more significant proposals for closed-loop and open-loop types of sun tracking systems

    A Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan

    No full text
    The coastal regions of Pingtung Plain in southern Taiwan rely on groundwater as their main source of fresh water for aquaculture, agriculture, domestic, and industrial sectors. The availability of fresh groundwater is threatened by unsustainable groundwater extraction and the over-pumpage leads to the serious problem of seawater intrusion. It is desired to find appropriate management strategies to control groundwater salinity and mitigate seawater intrusion. In this study, a simulation–optimization model has been presented to solve the problem of seawater intrusion along the coastal aquifers in Pingtung Plain and the objective is using injection well barriers and minimizing the total injection rate based on the pre-determined locations of injection barriers. The SEAWAT code is used to simulate the process of seawater intrusion and the surrogate model of artificial neural networks (ANNs) is used to approximate the seawater intrusion (SWI) numerical model to increase the computational efficiency during the optimization process. The heuristic optimization scheme of differential evolution (DE) algorithm is selected to identify the global optimal management solution. Two different management scenarios, one is the injection barriers located along the coast and the other is the injection barrier located at the inland, are considered and the optimized results show that the deployment of injection barriers at the inland is more effective to reduce total dissolved solids (TDS) concentrations and mitigate seawater intrusion than that along the coast. The computational time can be reduced by more than 98% when using ANNs to replace the numerical model and the DE algorithm has been confirmed as a robust optimization scheme to solve groundwater management problems. The proposed framework can identify the most reliable management strategies and provide a reference tool for decision making with regard to seawater intrusion remediation
    • 

    corecore