1,702 research outputs found

    The Credibility Crisis in IS: A Global Stakeholder Perspective

    Get PDF
    The purpose of this panel involves helping the IS community devise strategies for augmenting the field’s credibility. Representing different continents, educational systems, and roles, our panelists will provide a global perspective on IS credibility. Using stakeholder theory as an organizing framework, this panel will identify the key stakeholders that positively and negatively influence the IS discipline as well as strategies for leveraging these stakeholders. Spirited debates will occur concerning the role of regulators, funding sources, faculty, administrators, students, and employers in shaping the credibility of the IS discipline

    The Credibility Crisis in IS: A Global Stakeholder Perspective

    Get PDF
    The field of information systems (IS) faces a credibility crisis, which threatens its stature as a highly-respected academic discipline (Firth, King, Koch, Looney, Pavlou, and Trauth, 2011; Winter and Butler, 2011; among others). This article summarizes a panel discussion at the ICIS 2011 Conference, where a group of distinguished IS professors offered their unique perspectives on the challenges, origins, and solutions related to the global credibility crisis in IS. Using stakeholder theory as an organizing framework, the panel session identifies the key stakeholders influencing the credibility of the IS discipline, as well as the challenges and opportunities facing IS programs worldwide

    Comparison of effectiveness of Halo-femoral traction after anterior spinal release in severe idiopathic and congenital scoliosis: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Halo-femoral traction could gradually improve the coronal and sagittal deformity and restore the trunk balance through the elongation of the spine. The purpose of this retrospective study was to assess the effectiveness of Halo-femoral traction after anterior spinal release in the management of severe idiopathic and congenital scoliosis.</p> <p>Methods</p> <p>Sixty patients with severe and rigid curve treated with anterior spinal release, Halo-femoral traction, and second stage posterior spinal fusion were recruited for this retrospective study. Idiopathic Scoliosis (IS) group was 30 patients (23 females and 7 males) with mean age of 15.5 years. The average coronal Cobb angle was 91.6° and the mean global thoracic kyphosis was 50.6°. The curve type of these patients were 2 with Lenke 1AN, 4 with Lenke 1A+, 1 with Lenke 1BN, 10 with Lenke 1CN, 3 with Lenke 1C+, 3 with Lenke 3CN, 3 with Lenke 3C+, and 4 with Lenke 5C+. Congenital Scoliosis (CS) group included 30 patients (20 females and 10 males) with average age of 15.2 years. The average coronal Cobb angle of the main curve before operation was 95.7° and the average thoracic kyphosis was 70.2°. All patients had a minimum 12-month follow-up radiograph (range 12–72 months, mean 38 months).</p> <p>Results</p> <p>The average traction time was 23 days and the average traction weight was 16 kg. Four patients experienced brachial plexus palsy and complete nerve functional restoration was achieved at two months follow-up. For the IS group, the post-operative mean Cobb angle of major curve averaged 40.1° with correction rate of 57.5%. For the CS group, the post-operative mean Cobb angle was 56.5° with average correction rate of 45.2%. The difference in curve magnitude between the IS and CS patients after posterior correction was statistically significant (t = 4.15, p < 0.001). The correction rate of kyphosis between IS and CS patients was also statistically significant (t = -2.59, p < 0.016).</p> <p>Conclusion</p> <p>Halo-femoral traction was a safe, well-tolerated and effective method for the treatment of severe and rigid scoliosis patients. The posterior correction rate obtained after anterior release and traction was significant superior than that recorded from side bending film in current study.</p

    Extreme genetic fragility of the HIV-1 capsid

    Get PDF
    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency &gt;3%, and were also present in the mutant library, had fitness levels that were &gt;40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies

    Functional Annotation and Identification of Candidate Disease Genes by Computational Analysis of Normal Tissue Gene Expression Data

    Get PDF
    Background: High-throughput gene expression data can predict gene function through the ‘‘guilt by association’ ’ principle: coexpressed genes are likely to be functionally associated. Methodology/Principal Findings: We analyzed publicly available expression data on normal human tissues. The analysis is based on the integration of data obtained with two experimental platforms (microarrays and SAGE) and of various measures of dissimilarity between expression profiles. The building blocks of the procedure are the Ranked Coexpression Groups (RCG), small sets of tightly coexpressed genes which are analyzed in terms of functional annotation. Functionally characterized RCGs are selected by means of the majority rule and used to predict new functional annotations. Functionally characterized RCGs are enriched in groups of genes associated to similar phenotypes. We exploit this fact to find new candidate disease genes for many OMIM phenotypes of unknown molecular origin. Conclusions/Significance: We predict new functional annotations for many human genes, showing that the integration of different data sets and coexpression measures significantly improves the scope of the results. Combining gene expression data, functional annotation and known phenotype-gene associations we provide candidate genes for several geneti

    Batch effect confounding leads to strong bias in performance estimates obtained by cross-validation.

    Get PDF
    BACKGROUND: With the large amount of biological data that is currently publicly available, many investigators combine multiple data sets to increase the sample size and potentially also the power of their analyses. However, technical differences ("batch effects") as well as differences in sample composition between the data sets may significantly affect the ability to draw generalizable conclusions from such studies. FOCUS: The current study focuses on the construction of classifiers, and the use of cross-validation to estimate their performance. In particular, we investigate the impact of batch effects and differences in sample composition between batches on the accuracy of the classification performance estimate obtained via cross-validation. The focus on estimation bias is a main difference compared to previous studies, which have mostly focused on the predictive performance and how it relates to the presence of batch effects. DATA: We work on simulated data sets. To have realistic intensity distributions, we use real gene expression data as the basis for our simulation. Random samples from this expression matrix are selected and assigned to group 1 (e.g., 'control') or group 2 (e.g., 'treated'). We introduce batch effects and select some features to be differentially expressed between the two groups. We consider several scenarios for our study, most importantly different levels of confounding between groups and batch effects. METHODS: We focus on well-known classifiers: logistic regression, Support Vector Machines (SVM), k-nearest neighbors (kNN) and Random Forests (RF). Feature selection is performed with the Wilcoxon test or the lasso. Parameter tuning and feature selection, as well as the estimation of the prediction performance of each classifier, is performed within a nested cross-validation scheme. The estimated classification performance is then compared to what is obtained when applying the classifier to independent data

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    Sharing Detailed Research Data Is Associated with Increased Citation Rate

    Get PDF
    BACKGROUND: Sharing research data provides benefit to the general scientific community, but the benefit is less obvious for the investigator who makes his or her data available. PRINCIPAL FINDINGS: We examined the citation history of 85 cancer microarray clinical trial publications with respect to the availability of their data. The 48% of trials with publicly available microarray data received 85% of the aggregate citations. Publicly available data was significantly (p = 0.006) associated with a 69% increase in citations, independently of journal impact factor, date of publication, and author country of origin using linear regression. SIGNIFICANCE: This correlation between publicly available data and increased literature impact may further motivate investigators to share their detailed research data

    Reductive Evolution of the Mitochondrial Processing Peptidases of the Unicellular Parasites Trichomonas vaginalis and Giardia intestinalis

    Get PDF
    Mitochondrial processing peptidases are heterodimeric enzymes (α/βMPP) that play an essential role in mitochondrial biogenesis by recognizing and cleaving the targeting presequences of nuclear-encoded mitochondrial proteins. The two subunits are paralogues that probably evolved by duplication of a gene for a monomeric metallopeptidase from the endosymbiotic ancestor of mitochondria. Here, we characterize the MPP-like proteins from two important human parasites that contain highly reduced versions of mitochondria, the mitosomes of Giardia intestinalis and the hydrogenosomes of Trichomonas vaginalis. Our biochemical characterization of recombinant proteins showed that, contrary to a recent report, the Trichomonas processing peptidase functions efficiently as an α/β heterodimer. By contrast, and so far uniquely among eukaryotes, the Giardia processing peptidase functions as a monomer comprising a single βMPP-like catalytic subunit. The structure and surface charge distribution of the Giardia processing peptidase predicted from a 3-D protein model appear to have co-evolved with the properties of Giardia mitosomal targeting sequences, which, unlike classic mitochondrial targeting signals, are typically short and impoverished in positively charged residues. The majority of hydrogenosomal presequences resemble those of mitosomes, but longer, positively charged mitochondrial-type presequences were also identified, consistent with the retention of the Trichomonas αMPP-like subunit. Our computational and experimental/functional analyses reveal that the divergent processing peptidases of Giardia mitosomes and Trichomonas hydrogenosomes evolved from the same ancestral heterodimeric α/βMPP metallopeptidase as did the classic mitochondrial enzyme. The unique monomeric structure of the Giardia enzyme, and the co-evolving properties of the Giardia enzyme and substrate, provide a compelling example of the power of reductive evolution to shape parasite biology

    Environmental Levels of the Antiviral Oseltamivir Induce Development of Resistance Mutation H274Y in Influenza A/H1N1 Virus in Mallards

    Get PDF
    Oseltamivir (Tamiflu®) is the most widely used drug against influenza infections and is extensively stockpiled worldwide as part of pandemic preparedness plans. However, resistance is a growing problem and in 2008–2009, seasonal human influenza A/H1N1 virus strains in most parts of the world carried the mutation H274Y in the neuraminidase gene which causes resistance to the drug. The active metabolite of oseltamivir, oseltamivir carboxylate (OC), is poorly degraded in sewage treatment plants and surface water and has been detected in aquatic environments where the natural influenza reservoir, dabbling ducks, can be exposed to the substance. To assess if resistance can develop under these circumstances, we infected mallards with influenza A/H1N1 virus and exposed the birds to 80 ng/L, 1 µg/L and 80 µg/L of OC through their sole water source. By sequencing the neuraminidase gene from fecal samples, we found that H274Y occurred at 1 µg/L of OC and rapidly dominated the viral population at 80 µg/L. IC50 for OC was increased from 2–4 nM in wild-type viruses to 400–700 nM in H274Y mutants as measured by a neuraminidase inhibition assay. This is consistent with the decrease in sensitivity to OC that has been noted among human clinical isolates carrying H274Y. Environmental OC levels have been measured to 58–293 ng/L during seasonal outbreaks and are expected to reach µg/L-levels during pandemics. Thus, resistance could be induced in influenza viruses circulating among wild ducks. As influenza viruses can cross species barriers, oseltamivir resistance could spread to human-adapted strains with pandemic potential disabling oseltamivir, a cornerstone in pandemic preparedness planning. We propose surveillance in wild birds as a measure to understand the resistance situation in nature and to monitor it over time. Strategies to lower environmental levels of OC include improved sewage treatment and, more importantly, a prudent use of antivirals
    corecore