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Abstract

Background: With the large amount of biological data that is currently publicly available, many investigators combine
multiple data sets to increase the sample size and potentially also the power of their analyses. However, technical
differences (‘‘batch effects’’) as well as differences in sample composition between the data sets may significantly affect the
ability to draw generalizable conclusions from such studies.

Focus: The current study focuses on the construction of classifiers, and the use of cross-validation to estimate their
performance. In particular, we investigate the impact of batch effects and differences in sample composition between
batches on the accuracy of the classification performance estimate obtained via cross-validation. The focus on estimation
bias is a main difference compared to previous studies, which have mostly focused on the predictive performance and how
it relates to the presence of batch effects.

Data: We work on simulated data sets. To have realistic intensity distributions, we use real gene expression data as the basis
for our simulation. Random samples from this expression matrix are selected and assigned to group 1 (e.g., ‘control’) or
group 2 (e.g., ‘treated’). We introduce batch effects and select some features to be differentially expressed between the two
groups. We consider several scenarios for our study, most importantly different levels of confounding between groups and
batch effects.

Methods: We focus on well-known classifiers: logistic regression, Support Vector Machines (SVM), k-nearest neighbors (kNN)
and Random Forests (RF). Feature selection is performed with the Wilcoxon test or the lasso. Parameter tuning and feature
selection, as well as the estimation of the prediction performance of each classifier, is performed within a nested cross-
validation scheme. The estimated classification performance is then compared to what is obtained when applying the
classifier to independent data.
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Introduction

Every day, large quantities of data are generated by biological

and medical labs all over the world. Largely facilitated by online

repositories such as Gene Expression Omnibus (http://www.ncbi.

nlm.nih.gov/geo/[1]) and ArrayExpress (http://www.ebi.ac.uk/

arrayexpress/[2]), many of these data sets are made freely

available for other researchers to use. This has inspired many

investigators to design studies based entirely on public data or to

use public data in combination with their own data, to increase the

sample size and thereby hopefully the power to draw conclusions

(e.g., [3]). One field where the data sharing practices are well

developed and standardized is the one of high-throughput

profiling of gene expression data, which is the main motivation

behind the current study. However, the line of reasoning pursued

in this paper, as well as the main conclusions, are likely valid for

many different (biological and non-biological) types of data.

Most of the publicly available gene expression data have been

generated using expression microarrays measuring the expression of

thousands of genes in a single assay (see e.g. [4]), although next-

generation sequencing-based profiling of gene expression (RNA-

seq) is becoming increasingly common. The processing of

microarray data is well established and standard analysis pipelines

are available, but still there are (well-known) pitfalls. For example,

the measured gene expression levels are very sensitive to external

factors such as the technician running the experiment, the reagent

batch, or the time of the day when an assay was processed [5].

Such systematic errors, related to technical aspects, are often

referred to as batch effects (see [6] for a comprehensive discussion).

In this article, we use batch effects in a wide sense, to represent any

type of systematic bias between groups treated at different

timepoints or under different external conditions. In other words,

the bias introduced by a batch effect ‘‘may be defined as

unintentional, systematic erroneous association of some charac-
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teristic with a group in a way that distorts a comparison with

another group’’ [5]. These biases can appear between data sets

from completely different studies, but also within single studies,

where time and capacity restrictions may imply that it is not

always possible to process all samples under identical conditions.

Typically, batch effects affect different variables in different ways,

and are usually not eliminated by common between-sample

normalization methods [7,8]. Microarray experiments (just like

any other experiment) need to be carefully planned in order to

avoid confounding among potentially influential variables. If, for

example, all stage III patients in a cancer study are female and all

stage II patients are male, we will not be able to distinguish the

gender effect from the stage effect on our results. In such

situations, we say that the gender variable is confounded with the

stage variable [7]. The confounding can be strong, as in the

mentioned case, or weaker, e.g. if the stage II population is

enriched with male subjects, but the two categories are not

completely overlapping. Complete absence of confounding would

mean that the men (and women) are equally distributed in the

stage II and stage III populations. Within a single study,

confounding between the effect of the main outcome variable of

interest and the effect of other influential variables can often be

minimized with careful experimental design (see e.g. [9]).

However, even in well-designed studies, unexpected events like

dropouts or technical sample preparation differences can disrupt

the original design and introduce confounding. When combining

different data sets generated by different groups or at different

times, it is even more difficult since no single person has control

over the entire design. The increased sharing of data between

researchers through public data repositories further implies that it

is of utmost importance for every research group to document

potential confounding variables, to allow other researchers to

estimate the degree of confounding and design their experiment

appropriately.

Systematic differences between the combined data sets can have

a big influence on the subsequent analysis and can, if not properly

dealt with, lead to spurious findings as well as conceal true effects

[6,7,10,11]. The current study focuses on the impact of batch

effects on the ability to build and evaluate the performance of a

classifier based on gene expression data. Construction of classifiers,

with the aim to assign samples to groups or predict some other

trait of interest, is one of the most common goal in gene expression

studies. Many studies have focused on different methodologies and

pipelines for training a classifier, with the conclusion that there is

no such thing as the one and only best/correct classification procedure

[12,13]. Yet other researchers dealt with the concept of variable

selection and proper assessment of the performance of classifiers

[12,14–20].

Due to the high prevalence and potentially strong impact of

batch effects, several authors have proposed methods attempting

to eliminate their effects on observed data [21–24]. Studies

comparing several of these tools have led to the conclusion that the

performance of most approaches is similar [8,25]. The majority of

these methods assume that the confounding factor(s) are known to

the investigator. Sometimes, however, despite careful experimental

design there may be unrecorded or poorly documented variables

that are confounded with the outcome of interest. Recently,

several methods have been presented for estimating and eliminat-

ing such unknown batch effects, mainly in the context of

differential expression analysis [26,27]. We expect batch effect

removal methods to be most effective when the degree of

confounding between the batch variable and the endpoint of

interest is low, so that the gene expression effects attributable to

the two variables can be disentangled.

In this study, we investigate what results to expect when a

classifier is built and evaluated on a data set that may contain

batch effects, potentially (partly or entirely) confounded with the

class variable. As an example, consider a situation where we are

interested in building a classifier to distinguish cancer patients

(group 1) from healthy volunteers (group 2), and we combine one

public data set consisting of only healthy volunteers with our own

data set consisting of only patients. In such a situation, the fact that

the patients and the healthy volunteers come from different data

sets may introduce apparent differences between them that are not

truly related to the disease, and that thus may fail to generalize or

be replicated in other studies. The main goal of this study is to

evaluate whether the presence of a confounding factor introduces

a bias in ‘‘internal’’ classifier performance estimates obtained via

cross-validation compared to the actual performance of the

classifier on external data. Subsequently, we are also interested

in whether, in the presence of a confounding factor, a commonly

used batch effect removal method is able to eliminate the potential

bias it introduces. The importance of the study follows from the

observation that internal cross-validation estimates are often used

in practice as proxys for the true (external) performance (that we

expect if the classifier is applied to an independent data set), since

researchers typically want to use as many samples as possible to

construct the classifier. Simulation studies like this one are

therefore important to estimate the accuracy of the internal

measure. We demonstrate that running a standard pipeline of

statistical tools in cases where there is strong inherent bias in the

input data can give very misleading classification performance

estimates, and that not all experimental design problems can be

corrected retrospectively. This stresses the need for careful

planning before an experiment is performed, in order to avoid

batch effect confounding with the endpoint of interest as much as

possible.

Our input data is simulated, which means that we have access to

the ground truth to estimate the classifiers’ performance. We

restrict ourselves to situations with two groups (binary classifica-

tion). In this setting, we perform all steps from the simulated data

(normalized and log2 -transformed) to the final classifier –

including batch effect removal, gene selection, training the

classifier and evaluating the classifier’s performance – according

to the state of the art in the field. Our study covers two different

approaches for gene selection and four different classifiers. The

performance of each classifier is evaluated on the training data by

the means of nested cross-validation [12,18–20] as well as on

external data. We use ComBat [23] as batch effect removal

method. Although the setting may seem specific to ComBat and

cross-validation, the addressed issue is more general. We expect

that the major conclusions of this study also apply to other similar

batch effect correction models and different sampling approaches

to estimate the performance of a classifier.

We find that in data sets where there are no genes that are truly

differentially expressed between the two groups, the internal cross-

validation performance estimate is only approximately unbiased

when the batch effect is completely non-confounded with the class

labels. Eliminating the batch effects can not correct the bias found

in other settings. For data sets where some genes are truly

differentially expressed, we can use the cross-validation perfor-

mance estimate as a surrogate for the true performance as long as

the level of confounding is not too large. Eliminating the batch

effect results in improved classification performance for low levels

of confounding.

Bias of CV Performance Estimates Due to Batch Effect Confounding
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Materials

The simulated data is generated based on a (background

corrected, normalized and log2 transformed) gene expression

matrix (688patients|61528features, E-MTAB-990) from the

PETACC-3 clinical trial [28]. From this we randomly drew 80
and 600 samples to generate training and validation data sets,

respectively. The samples were split into two groups (g1 and g2).

This split was balanced (50% 1 and 50% 2). For the training data

set, we simulated processing in two batches (b1 and b2), with

varying degree of confounding between the batch assignment and

the outcome of interest (the sample group). We distinguished four

levels of confounding: none (50% g1 samples in b1, 50% in b2;

same for g2 samples), intermediate (75% 1 samples in b1, 25% in

b2; vice versa for g2 samples), strong (95% 1 samples in b1, 5% in

b2; vice versa for g2 samples) and full (100% g1 samples in b1,

100% of g2 samples in b2). Figure 1 illustrates the four

confounding levels.

We simulated null data sets where none of the features were

differentially expressed between the two groups, as well as data sets

where approximately 1% of the features underwent a change in

expression between the two sample groups (the alternative setting).

Furthermore, we simulate both training data sets where the two

batches behave the same (that is, where there is no batch effect)

and data sets where the two batches behave differently (that is,

where there is a batch effect). For training data sets with batch

effect, we simulated 50% of the features to be affected by it. This is

in line with the results of [7], who found between 32.1% and

99.5% of the variables in the data sets they studied to be associated

with the batch effect. For each simulation setting, we simulated 10
replicate data sets. All in all we trained the classifiers on data from

9 different settings (with 10 replicates for each setting).

All generated validation data sets are balanced and are not

affected by batch effects, which is motivated by a desire to generate

validation data sets that are representative of a general population.

The influence of batch effects between the training and validation

sets was examined by [8] and [11], who showed that cross-batch

prediction works relatively well when the outcome variable is not

heavily confounded with the batch variable (that is, if the training

data set and the external validation data set have similar sample

composition). We generated validation data sets both with and

without truly differentially expressed genes. The parameter

settings as well as a detailed description of the simulation

procedure are provided in Supporting Information S1. In

addition, the R code [29] used to simulate the data is also

provided in Supporting Information S2.

Methods

Data preprocessing
To eliminate the effect of the confounding factor on the training

data set, we use ComBat [23], which employs an empirical Bayes

approach to estimate a location and scale parameter for each gene

in each batch separately, and adjusts the observed expression

values based on the estimated parameters. The use of both

location and scale adjustment means that both additive and

multiplicative batch effects can be eliminated, and the built in

empirical Bayes step improves the performance for small sample

sizes by pooling information across the genes. Previous studies

have shown that ComBat is able to eliminate batch effects in

several different situations, and performs at least as well as other

batch effect removal methods [25]. We apply ComBat with the

confounding factor as the ‘batch’ variable and the known group

labels as a covariate. In case the batch factor is completely

confounded with the group labels, we eliminate the batch effect

without including any covariates in the model. Batch effect

removal is often used as a first step, to harmonize different data

sets before building a classifier. Hence, in this study, the batch

effect removal is always applied to the entire data set (that is,

before splitting the data in the cross-validation step).

Cross-validation
The main theme in this paper is the construction of classifiers. A

classifier consists of a collection of predictor variables and a

classification rule such that, given observed values of the predictor

variables for a sample, we can plug them into the classification rule

and based on the result assign a group label to the sample. To build

such a classifier in a supervised setting, we need a training data set,

consisting of samples for which we are given the observed values of

a number of variables as well as the true group labels. This data is

used to select appropriate predictor variables from the variable

pool and to construct the classification rule. The goal, however, is

to obtain a classifier that will work well for predicting the group

labels of new samples, that are not part of the training set. In fact,

we can even claim that predicting the group labels of the samples

in the training set correctly is meaningless since the true group

Figure 1. The four confounding levels considered in this study. The two bars for each confounding level correspond to the two batches. The
different colors correspond to the two experimental groups (e.g., control and treated). The height of the respective bars illustrate the fraction of the
samples belonging to each category. In addition to the four situations shown in this figure, we also consider data sets without batch effect at all, that
is, where all samples are generated from the same batch.
doi:10.1371/journal.pone.0100335.g001

Bias of CV Performance Estimates Due to Batch Effect Confounding

PLOS ONE | www.plosone.org 3 June 2014 | Volume 9 | Issue 6 | e100335

 g  g

 g

 g



labels are already known. To measure the performance of a

classifier constructed from a training set, we thus need to apply it

to an independent test set that is representative of the data sets for

which we want to apply our classifier, but for which the true group

labels are known. In this way, we can record the agreement

between the labels predicted by the classifier and the true labels.

This will tell us how well the classifier can be expected to work in

general on independent test data sets (where we do not know the

true group labels).

In practical situations, we typically want to use all the available

data to construct the classifier. Various methods have been

proposed to artificially generate training and test sets from a single

data set. Cross-validation is one of the most widely used such

approaches, and involves randomly splitting the data set into K

parts (K is called the fold), and using one of the parts as the test set

and the remaining K{1 parts as the training set. This procedure

is repeated until all K parts have been used once as a test set.

Other methods, such as the bootstrap, are also frequently used to

generate artificial training and test data sets. Moreover, some

classification methods (like the random forest) include a resampling

step as part of the model building, which allows the researcher to

obtain an ‘‘out-of-bag’’ estimate of the predictive ability already

from the model building phase.

Cross-validation is used for many different purposes, arguably

the most common ones being to determine the optimal value of

hyperparameters for a classifier and to estimate the performance

we can expect from a given classification procedure if applied to

independent data.

Biases of cross-validation estimates. Since the estimates

obtained through cross-validation are derived from subsets of the

original data set, with different numbers of samples than in the

whole set, there will be an inherent bias in these estimates that

depends on the value of K . Estimates obtained through leave-

one-out cross-validation (LOOCV, or N -fold cross-validation

where N denotes the number of samples) are less biased, but in

contrast have higher variance than estimates obtained with

smaller folds [30].

We use stratified cross-validation, meaning that the fraction of

samples from each class is kept as constant as possible across the

different cross-validation folds. This ensures for example that each

class is present in all training sets.

In this study we focus on the additional biases that may result if

the data set used to build the classifier (and thus used as the basis

for the cross-validation) is not representative of the collection of

new data sets to which the classifier will eventually be applied. In

this case, as we will see, the performance estimate obtained from

the cross-validation can be far from the actual performance of the

classifier on a new independent data set.

Cross-validation scheme. In the present study, we apply

the cross-validation procedure in a nested, or two-level, fashion as

illustrated in the top panel of Figure 2. The purpose of the outer

cross-validation loop is to provide an estimate of the classification

performance of a constructed classifier. The inner cross-validation

loop, in contrast, is used to build the classifier, that is, to select the

optimal combination of hyperparameters and the subset of

predictor variables for the classifier. To distinguish the training

and test sets from the two levels, we denote the data sets generated

in the outer cross-validation loop the outer training and test sets,

respectively. Given that the fold of the outer cross-validation is

Kouter, and that the number of samples in the original data set is N,

each outer training set will consist of approximately
Kouter{1

Kouter

N

samples, and the corresponding outer test set consists of the

remaining
N

Kouter

samples. Similarly, the training and test sets

generated in the inner cross-validation loop are denoted inner

training and test sets. Note that since the cross-validation

procedure is nested, each pair of inner training and test sets will

be generated from, and thus be subsets of, one of the outer training

sets. The fold of the inner cross-validation is denoted Kinner.

In each round of the outer cross-validation loop, we thus create

an outer training set and an outer test set. On the outer training

set, we then apply the inner cross-validation procedure. More

precisely, for each inner training set we build several classifiers

(with different numbers of predictor variables and/or hyperpara-

meter values). Each of the classifiers is applied to the correspond-

ing inner test set, and the classification performance is recorded.

This is repeated for all inner training sets, and the observed

performances are averaged across the inner test sets. The

combination of hyperparameter value and number of predictor

variables giving the best averaged predictive performance is

returned from the inner cross-validation loop. Bearing in mind

that the combination was chosen since it performed best in the

inner cross-validation loop, the performance estimate obtained

from the inner cross-validation is biased. It is an overoptimistic

estimate of the actual performance of the classifier. Thus, to obtain

a better estimate of the performance, a new classifier is built on the

outer training set using the selected optimal hyperparameter value

and number of variables. This new classifier is then applied to the

corresponding outer test set. The predictive performance obtained

for this test set is recorded. The final cross-validation estimate of

the classification performance is obtained by averaging the

estimates obtained for each of the Kouter outer test data sets.

It is important to note that this value is not an estimate of the

performance of a specific classifier (i.e., with a specific set of

predictors and a specific classification rule), since different

classifiers are built in each round of the outer cross-validation

loop. Rather, the value obtained from the cross-validation

provides an estimate of the performance of a classifier generated

through a specified workflow (defined by the hyperparameter and

predictor selection procedure defined by the inner cross-validation

loop). We compare the performance estimate obtained by the

outer cross-validation procedure (perfCV ) to what we consider the

‘‘true’’ performance (perftrue). We obtain perftrue by building a

classifier on the whole original training data set (following the same

procedure as above), and applying it to an independent validation

data set. This workflow is depicted in the lower panel of Figure 2.

If perfCV and perftrue are similar, we conclude that the cross-

validation based estimate is unbiased, and that perfCV provides a

useful estimate of the real performance of our classifier.

Conversely, if the two values are far from each other, the cross-

validation estimate does not say much about the actual perfor-

mance of the classifier, and consequently can be quite misleading

in practical situations. The whole procedure used to build and

evaluate a classifier is outlined in Figure 3.

Measuring the performance of a classifier
Many measures have been proposed for quantifying the

performance of a classifier. The simplest measure is the

misclassification rate, which is defined as the fraction of the samples

that are assigned the wrong label by the classifier. This often works

well but can be misleading when the groups are of very different

size.

Since all our examples are on balanced data, we present the

results in the form of the misclassification rate. Results for other

performance measures can be found in Supporting Informa-

tion S1.

Bias of CV Performance Estimates Due to Batch Effect Confounding
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Classification rules
As noted above, a classifier consists of a collection of predictor

variables and a classification rule to combine the observed

predictor values and yield a predicted group label. In this section

we briefly describe the four approaches we use to build prediction

rules, and the next section outlines the methods for selecting

predictor variables. We consider four classification approaches in

this study; random forests, support vector machines, k-nearest

neighbor classifiers and penalized logistic regression.

The random forest classifier was proposed by Breiman [31].

The algorithm uses subsampling of the samples of a data set to

generate a large number of similar data sets, and builds a

classification tree for each of them. A new sample is then passed

through all the classification trees, and voting among their

predictions determines its final group label. We built the random

forest classifiers using the rfCMA function in the CMA package [32]

for R [29]. This implicitly calls functions from the randomForest

R package [33]. With default parameters, which were used in this

study, the random forest consists of 500 trees. In each branching

point, a subset of the available variables are considered as potential

split variables. The size of the subset is equal to the square root of

the number of variables.

Support vector machines (SVMs) [34] attempt to construct a

linear hyperplane that separates the samples into different groups.

In doing so, the distance from the hyperplane to the closest point

(the margin) is maximized. In most practical applications perfect

separation is not feasible, and the objective function is defined as a

tradeoff between maximizing the margin and minimizing the

distance between the hyperplane and any misclassified points. The

tradeoff between the two terms is governed by a cost parameter

(usually denoted C). In our experiments, we built SVMs with C

taking values from f10{5,10{3,0:1,1,10g. The optimal value of

this hyperparameter is selected in the inner cross-validation loop

(see Figure 2). We built SVMs using the svmCMA function in the

Figure 2. The cross-validation scheme employed in the study. The upper panel illustrates the combination of the inner cross-validation loop,
which is used to estimate the optimal combination of the classifier hyperparameter and number of features, and the outer cross-validation loop,
which is used to estimate the predictive performance of the constructed classifier. The lower panel shows how the final classifier is built on the whole
input data set, and its performance is estimated on an external validation data set. The bias of the estimate from the cross-validation procedure is
obtained by comparing the values in the two colored boxes.
doi:10.1371/journal.pone.0100335.g002
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CMA R package. This implicitly calls functions from the e1071 R

package [35].

The k-nearest neighbor (k NN) algorithm classifies a new

sample by finding the k closest samples from the training set, and

uses voting among them to assign a group label to the new sample.

The performance depends on the hyperparameter k (the number

of neighbors), which we select in the inner cross-validation loop.

We allow k to take values from f2,5,8,11,15g. We built the k NN

classifiers using the knnCMA function in the CMA R package. This

implicitly calls functions from the class R package [36].

Given a two-class problem, logistic regression models the

natural logarithm of the odds of belonging to class 1 as a linear

combination of the predictor variables. As regression models in

general, logistic regression is sensitive to collinearity among

predictors, and thus a ridge penalization parameter l is imposed.

Using the inner cross-validation procedure, we select the optimal

value of l from f10{4,10{3,10{2,0:1,1,10g. We fit the logistic

regression models using the plrCMA function in the CMA R

package.

Some classifiers may work better if all predictor variables are on

similar scales [37]. For this reason, we z-transform all variable

values (that is, we subtract the mean value and divide by the

standard deviation) before building a classifier. The scaling

parameters (mean and standard deviation for each variable) are

always derived from the (outer or inner, respectively) training set,

and the corresponding test set is scaled using the same parameters.

This is important to account for potential differences in the class

composition of the training and test sets. Results with other

normalization procedures are very similar to the ones obtained

with the z-transform.

Selection of predictor variables
As described above, in the inner cross-validation loop, we

compare classifiers built on different collections of variables. The

set of predictor variables used in a classifier is determined in one of

two ways. In the first approach, we use the R top-ranked variables

from a Wilcoxon test comparing the two classes, where R is chosen

from f5,10,30,100g. In the second approach, we apply lasso

regression [38] with the regularization parameter (a) selected from

f0:1,0:5,1g, and retain all variables with non-zero regression

coefficient. The variable selection is performed by the function

GeneSelection from the CMA R package. Note that the variable

selection is performed before the classification rule is constructed,

and hence all classifiers are built on the same set of variables.

However, not all variables may be explicitly used in the

classification rules.

It is important that the variable selection is performed only on

the training data that will be used to build the classifier. The test

set that will be used to evaluate the classifier is not allowed to

influence the variable selection, since this could potentially

introduce a bias in the performance estimation [20]. Hence, we

apply the variable selection to each training set independently,

before building a classifier using any of the methods discussed in

the previous paragraph.

Results

Simulation study, null case
Under the null simulation setting – when there are no variables

that are truly differentially expressed between the two classes we

want to discriminate – it is reasonable to assume that any classifier

built on the data will be no better than random guessing when it

comes to assigning new samples to the correct group. However, let

us assume that there are other factors (we will refer to all such

Figure 3. Step-by-step description of the flowchart illustrated in Figure 2. The code used to produce the results presented in this
manuscript is provided in Supporting Information S2.
doi:10.1371/journal.pone.0100335.g003
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effects as batch effects) that are confounded with the group label in

the training data and that affect the values of the variables. For

example, imagine a situation where most of the patients treated

with drug A (i.e., sample group 1) come from one data set, and

most of the samples treated with drug B (sample group 2) come

from another data set. In another situation, the patients treated

with drug A could be significantly older than those treated with

drug B. Confounding factors like these may affect certain genes in

such a way that we observe a difference between the two sample

groups in the training data, which are not truly related to the

factor we are interested in (above, the difference between the two

drugs). This means that it may very well be possible to build a

classifier that works well on this specific data set, but since these

variables are not truly linked to the differences between the drugs,

but rather to technical effects, they are unlikely to hold up as good

discriminators in another data set. Moreover, the estimate of the

predictive performance obtained through the cross-validation

procedure on the training set may be far from accurate. Note

that in this context, we consider also batch effects that are not

necessarily known to the investigator.

Figure 4(a) shows the estimated misclassification rate obtained

from the cross-validation on the training data set (the internal

measure) as well as the ‘‘true’’ performance obtained by applying

the final classifier to an independent data set (the external measure).

We are interested in knowing whether the internal measure is an

accurate reflection of the external measure. In the figures, we have

combined the results for all four evaluated classification algorithms

(SVM, RF, logistic regression and kNN), since they behave

similarly. In Supporting Information S1 we show figures where the

dots are colored by classification algorithm rather than by variable

selection algorithm.

The training set is simulated to contain a batch effect, which is

not present in the validation data. Moreover, we assume that we

are unaware of this batch effect, and thus do not make any attempt

to eliminate it at this stage. The four columns of Figure 4(a)

correspond to varying levels of confounding between the class

labels and the batch factor. In the leftmost panel, the batch factor

is not confounded with the class labels, which means that the class

labels are equally distributed between the two batches (see

Figure 1). In practice, this would correspond e.g. to a situation

where we combine two data sets, each containing equal fractions

of patients treated with drug A, and equal fractions of patients

treated with drug B. In the rightmost panel, there is full

confounding between the batch factor and the group labels. In

other words, it would correspond to a situation where all patients

treated with drug A come from one dataset and all patients treated

with drug B come from another dataset. The panels in between

correspond to intermediate levels of confounding.

As expected, in all cases, the performance of the classifiers when

applied to the external validation set is not better than chance,

with an average misclassification rate close to 50%. However, the

cross-validation estimate (the ‘internal’ measure) depends strongly

on the level of confounding between the batch and the group

labels. When there is no confounding (that is, if the samples from

each group are evenly distributed between the two batches), the

cross-validation estimate is almost unbiased, although the variance

is larger than for the external measure. In other words, the

performance estimate provided by the cross-validation is a useful

proxy for the true performance. As the degree of confounding

increases (moving towards the right in the figure), the cross-

validation performance estimate becomes increasingly over-

optimistic, and with full confounding the cross-validation proce-

dure estimates the misclassification rate to 0 (that is, all samples

can be correctly classified). This is not surprising since in the case

of full confounding, there is no way to discriminate the batch effect

from a true group difference in the training data set. The results

observed in the presence of confounding thus imply that the

performance estimate obtained by the cross-validation is in fact far

from the performance we can expect if we apply the classifier to an

external data set, and thus rather misleading.

The type of variables selected for the final classifier by each of

the two variable selection methods, for each of the four

confounding levels, is shown in Figure 4(b). In Supporting

Information S1, we show also the distribution of the number of

variables that are selected as being optimal for each degree of

confounding. When there is no confounding between the group

and the batch, almost no variables that are associated with the

batch effect will be selected with any of the variable selection

methods. As the level of confounding increases, the fraction of

batch-related genes that are included in the final classifier

increases, most rapidly for the Wilcoxon variable selection. Recall

that these genes are not truly associated with the group

discrimination, and that in fact they do not hold up as good

discrimination rules when applied to a data set without this specific

batch effect (as illustrated in Figure 4(a)).

Next, we assume that we are indeed aware of the existence of

the batch effect (for example, we may know that the samples were

processed at different times or come from different data sets), and

we apply ComBat [23] to the entire training data set (that is,

before the outer cross-validation is applied) in order to eliminate

the effect of the batch before training the classifier and performing

the cross-validation to estimate its performance. The resulting

performance estimates are shown in Figure 5(a). We note that in

the absence of truly differentially expressed genes, and with

intermediate or strong confounding, the batch effect removal

clearly fails to eliminate the bias in the performance estimates. The

cross-validation still overestimates the true performance (the

‘internal’ estimate is systematically lower than the ‘external’

value). This is likely attributable to the confounding between the

group and batch factors, which affects the batch effect removal.

More precisely, when we perform the batch effect removal, we use

the group factor as a covariate for ComBat, essentially asking the

method to retain the information that can be associated with the

group factor. If the batch effect and the group factor are partly

confounded, this implies that ComBat may not eliminate the full

impact of the batch factor, and the part of the batch-related signal

that is associated with the group factor may be retained also after

the batch effect removal. Of course, this signal is not seen in the

external validation data set.

Since the batch effect is the only non-random effect in this data,

eliminating it makes the previously batch-affected variables

indistinguishable from the rest of the variables. Thus, it is not

surprising that around half of the selected variables are ‘‘batch-

related’’, and the other half are ‘‘non-batch-related’’ (Figure 5(b)).

An interesting effect is seen in the right-most panel of the figure.

When the batch is completely confounded with the group labels,

and the batch effect is removed using ComBat, the cross-validation

often gravely underestimates the classification performance. This

can be explained by an overcompensation mechanism. In this

case, since the batch and the group factor are in fact identical, we

can not provide the group factor as a covariate to ComBat in order

to retain the information related to it. Instead, we just attempt to

eliminate the effect of the batch on the expression data. In

principle, one goal of the batch effect removal is to make the

average expression of each gene equal in the two batches. Since

the batch effect removal was performed on the entire training data

set this means that if we, in the classifier construction, find a gene

that is higher in group 2 than in group 1 in an outer training set, it
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necessarily has the opposite pattern in the corresponding outer test

set. Hence, when we apply the trained classifier to this test set to

estimate the performance, many of the samples will be assigned to

the wrong group and the estimate of the misclassification rate will

be high. However, for the external data set used to validate the

classifier, these genes are equally distributed in the two groups and

thus the classifier performs no better (or worse) than chance.

Simulation study, alternative case
Here, we consider the case where, in contrast to the example

above, there actually are some genes that are differentially

expressed between the two groups that we wish to distinguish.

As for the null case above, we examine the effect of a confounding

variable (the batch), with varying degree of confounding between

the batch and the group labels. In this case, since there are genes

that are truly differentially expressed between the two groups of

interest, we expect that it should be possible to obtain a classifier

with good classification performance. However, if the batch effect

is strong and confounded with the factor of interest, we anticipate

that the variable selection may be guided towards these variables,

which are not truly differentially expressed between the two

populations and thus do not generalize well to independent data

sets.

Figure 6(a) shows the performance for varying degree of

confounding, when we made no attempt to eliminate the

confounding factor. For low levels of confounding (the two left-

most panels) there is no discernible bias in the cross-validation

estimates. Moreover, we note that the misclassification rate is

Figure 4. Evaluation of classifiers built on data without truly differentially expressed genes between the classes, but with a batch
effect with various degree of confounding with the class labels. (a) Estimated predictive performance from the outer cross-validation
(internal) and obtained by applying the constructed classifier to an external test set (external). (b) The fraction of predictor variables selected for the
final classifier that were simulated to be differentially expressed and/or associated with the batch. The bars summarize results across all classifiers and
all data set replicates. The bar heights represent the average fraction of variables extracted from each category, and the error bars extend one
standard deviation above the average. Note that since there are no truly differentially expressed genes in this data set the height of the two
corresponding bars is zero.
doi:10.1371/journal.pone.0100335.g004
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lower than in Figure 4(a), both for the training and the validation

data set, thanks to the presence of some genes that are truly

differentially expressed between the groups. We can see the effect

also in Figure 6(b), which shows the fraction of the selected genes

that were simulated to be truly discriminating and/or associated

with the batch effect. For low levels of confounding, most of the

genes selected by the lasso are indeed truly differentially expressed

between the two groups. With the Wilcoxon test, many batch

related variables are selected, and consequently the resulting

classifiers perform worse (Figure 6(a)).

As the degree of confounding increases, the classifier tends to a

higher extent to select genes that are associated with the batch

effect, which provides a classifier that works well for the training

data but that does not generalize well, especially for the Wilcoxon

variable selection.

Finally, we investigate the results obtained after eliminating the

batch effect using ComBat (Figure 7). Comparing to Figure 6, we

notice that if the degree of confounding is not too large,

eliminating the confounding variable gives a better classifier (with

lower misclassification rate), and a higher fraction of selected genes

that are truly differentially expressed between the groups.

Moreover, the bias in the cross-validation performance estimates

is negligible.

For extensive confounding we make the same observation as for

the null case: the elimination is not fully efficient and the

performance estimates from the cross-validation are heavily

biased. Moreover, for the full confounding case we again

Figure 5. Evaluation of classifiers built on data without truly differentially expressed genes between the classes, but with a batch
effect with various degree of confounding with the class labels, after the elimination of this batch effect with ComBat. (a) Estimated
predictive performance from the outer cross-validation (internal) and obtained by applying the constructed classifier to an external test set (external).
(b) The fraction of predictor variables selected for the final classifier that were simulated to be differentially expressed and/or associated with the
batch. The bars summarize results across all classifiers and all data set replicates. The bar heights represent the average fraction of variables extracted
from each category, and the error bars extend one standard deviation above the average. Note that since there are no truly differentially expressed
genes in this data set the height of the two corresponding bars is zero.
doi:10.1371/journal.pone.0100335.g005
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overcompensate in the batch effect elimination, and thus the cross-

validation underestimates the classification performance. The

results can be compared to those given in Figure 8, which shows

the performance measures obtained from a data set without any

added batch effect. This represents the situation that we would like

to achieve with the batch effect elimination. In this case, the

classification accuracy is good, and the bias of the cross-validation

estimate is low. The results are similar to those obtained with a low

degree of confounding, which suggests that batch effects can be

removed if they are not too heavily confounded with the variable

of interest. This stresses the importance of good experimental

design or careful merging of data sets, in order to avoid

confounding as much as possible. It also highlights the importance

of not blindly trusting reported cross-validation based performance

estimates, since they may be heavily biased in the presence of

(perhaps hidden) confounders.

Discussion

The increasing amount of publicly available gene expression

data provides researchers with the potential of combining them in

order to create large collections of samples, which may provide

higher power in addressing research hypotheses. Many researchers

have already taken advantage of the large collection of public data,

either by considering exclusively already published data sets, or by

combining the public data with their own generated data [39,40].

When combining data from different studies, it is important to be

aware that the data has typically been collected in different places,

with different equipment and under different external conditions.

Figure 6. Evaluation of classifiers built on data containing truly differentially expressed genes between the classes, as well as a
batch effect with various degree of confounding with the class labels. (a) Estimated predictive performance from the outer cross-validation
(internal) and obtained by applying the constructed classifier to an external test set (external). (b) The fraction of predictor variables selected for the
final classifier that were simulated to be differentially expressed and/or associated with the batch. The bars summarize results across all classifiers and
all data set replicates. The bar heights represent the average fraction of variables extracted from each category, and the error bars extend one
standard deviation above the average.
doi:10.1371/journal.pone.0100335.g006
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All these factors are likely to have considerable effects on the

measured expression levels, referred to as ‘‘batch effects’’. As

individual studies grow larger and larger, it is increasingly likely

that also samples within the same data set have been analyzed at

different time points and under different conditions, and may thus

be subject to the same type of unwanted variation as data from

different studies. Moreover, study dropout and unknown con-

founders can introduce unwanted variation in otherwise well

designed studies. Batch effects can be a big obstacle when

combining data sets, and their characterization and potential

elimination have recently received much attention in the literature

(e.g., [7,8,23,25]).

There are several, qualitatively different, approaches to

combining a collection of data sets, depending on the research

question of interest. One widely used approach is meta-analysis,

which aggregates the results obtained by performing the analysis of

interest separately on each data set. Meta-analysis is appropriate

for example to examine whether a certain gene is consistently

found to be associated with a given phenotype across several

studies. However, meta-analysis is not always a feasible alternative.

For example, to perform unsupervised analysis like clustering, or

to construct a classifier, the different data matrices typically have

to be merged in order for the analysis to profit from the increased

sample size. In these situations, unaddressed batch effects may

severely compromise the results of the analysis by concealing the

real signal or introducing an artificial one [7]. In this paper we

have discussed the performance evaluation of classifiers via cross-

validation, and how the performance estimates are affected by the

presence of batch effects in the training data, with various degree

of confounding between the batch variable and the main grouping

Figure 7. Evaluation of classifiers built on data containing truly differentially expressed genes between the classes, as well as a
batch effect with various degree of confounding with the class labels, after the elimination of this batch effect with ComBat. (a)
Estimated predictive performance from the outer cross-validation (internal) and obtained by applying the constructed classifier to an external test set
(external). (b) The fraction of predictor variables selected for the final classifier that were simulated to be differentially expressed and/or associated
with the batch. The bars summarize results across all classifiers and all data set replicates. The bar heights represent the average fraction of variables
extracted from each category, and the error bars extend one standard deviation above the average.
doi:10.1371/journal.pone.0100335.g007
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variable. The focus on estimation bias (in relation to the

performance we would expect from the classifier built on the

entire data set and applied to an external test set) is a main

difference between this study and previous studies, which have

mostly focused on the predictive performance and how it relates to

the presence of batch effects [11]. We have shown that in the

presence of a batch effect with at least moderate level of

confounding with the main grouping variable, the performance

estimates obtained by cross-validation are highly biased. This

stresses the importance of careful consideration of potential

confounding effects when merging data sets from different studies

or when samples within the same study have to be processed at

different time points or under otherwise different external

conditions. The presence of a batch effect that was completely

non-confounded with the signal of interest did not introduce bias

in the performance estimates obtained by cross-validation.

Unless the batch effect is heavily confounded with the outcome

of interest, eliminating the batch effect typically improves the

performance of the resulting classifier. From this point of view,

hence, elimination of batch effects before constructing a classifier is

beneficial. However, the bias in the cross-validation performance

estimates is not eliminated by the batch effect removal, and

consequently the cross-validation performance estimates obtained

after batch effect elimination are not more reliable measures of the

true performance than those obtained without batch effect

elimination. This apparent insufficiency of the batch effect

removal stresses the importance of careful experimental design

where confounding between potential batch effects and the signal

of interest are avoided as much as possible. In other words, batch

effect removal methods should not be trusted blindly as a ‘post-

experimental’ way of rescuing a badly designed experiment.

The presented results have implications not only for binary

classifier evaluation, but also for evaluation of multi-class classifiers

and predictive models with other endpoints, such as survival time.

Moreover, the results presented here are important for differential

expression analysis and other approaches for ranking genes in

terms of significance. We have shown that in the presence of batch

effects that are confounded with the signal of interest, many of the

highly ranked variables are associated only with the batch effect

and not truly differentially expressed between the interesting

groups. Consequently, they are unlikely to hold up as statistically,

as well as biologically, significant discriminators in any other study.

For the two variable selection methods we evaluated, the Wilcoxon

test seemed to be more sensitive to the confounding, and included

more batch effect related genes in the final classifier than the lasso

variable selection. We hypothesize that one reason for this is that

the lasso considers all variables simultaneously when doing the

selection, and tends to include relatively uncorrelated variables in

the final selection [41]. The Wilcoxon test, on the other hand, is

applied to the genes independently, and highly correlated genes

are likely to obtain similar ranking scores.

While the present study is focused on cross-validation as the

method for estimating classification performance, other methods

have been suggested for the same purpose (e.g., various bootstrap

procedures or permutation tests). It has been shown that in

general, the bias of these methods can be quite different [42].

However, this difference applies independently of the degree of

confounding, and we expect the effect of the degree of

confounding on the bias to be similar across the methods.

Similarly, we expect the results to generalize to other batch effect

removal methods and classifiers.

Supporting Information

Supporting Information S1 Additional results and simu-
lation details. Detailed description of the data simulation

procedure, as well as further details and alternative representations

of the reported results.

(PDF)

Figure 8. Evaluation of classifiers built on data containing truly differentially expressed genes between the classes, but no batch
effect. (a) Estimated predictive performance from the outer cross-validation (internal) and obtained by applying the constructed classifier to an
external test set (external). (b) The fraction of predictor variables selected for the final classifier that were simulated to be differentially expressed and/
or associated with the batch. The bars summarize results across all classifiers and all data set replicates. The bar heights represent the average fraction
of variables extracted from each category, and the error bars extend one standard deviation above the average. Note that since there is no batch
effect in this data set the height of the two corresponding bars is zero.
doi:10.1371/journal.pone.0100335.g008
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Supporting Information S2 R code used for data simu-
lation and analysis. Documented R code for the simulation

procedure as well as the analysis and result generation.

(HTML)
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vector machines and kernels for computational biology. PLoS Computational

Biology 4.

38. Tibshirani R (1996) Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society (Series B) 58: 267–288.

39. Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, et al. (2013)

A colorectal cancer classification system that associates cellular phenotype and

responses to therapy. Nature Medicine 19: 619–625.

40. Budinska E, Popovici V, Tejpar S, D’Ario G, Lapique N, et al. (2013) Gene

expression patterns unveil a new level of molecular heterogeneity in colorectal

cancer. The Journal of Pathology 231: 63–76.

41. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net.

J R Stat Soc Series B Stat Methodol 67: 301–320.

42. Kim JH (2009) Estimating classification error rate: Repeated cross-validation,

repeated hold-out and bootstrap. Comput Stat Data Anal 53: 3735–3745.

Bias of CV Performance Estimates Due to Batch Effect Confounding

PLOS ONE | www.plosone.org 13 June 2014 | Volume 9 | Issue 6 | e100335

http://books.google.ch/books?id=3-8MsCiPqnkC
http://www.R-project.org/
http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071
http://www.stats.ox.ac.uk/pub/MASS4

