39 research outputs found

    Manganese content records seasonal upwelling in Lake Tanganyika mussels

    No full text
    International audienceBiogenic productivity of Lake Tanganyika is highly dependent on seasonal upwellings of cold, oxygen-depleted, nutrient-rich deep waters. We investigated the shell of freshwater bivalve Pleiodon spekii as a geochemical archive of these periodic hydrological changes tuned by the monsoon regime. The results of a three-year-long limnological and geochemical survey of the coastal waters performed on the dissolved and particulate fractions were compared to LA-ICP-MS profiles of Mn in five aragonitic shells from the same lake location. Three shells present very similar Mn/Ca profiles dominated by a peak that matched the concomitant increase of Mn and chlorophyll a in surface waters during the 2002 upwelling, while a shell collected during 2003 dry season detect both 2002 and 2003 upwelling events. Larger shells showing an extremely reduced growth display more than 8 Mn/Ca peaks suggesting at least an 8-year-record of seasonal changes in water composition. We postulate that Mn/Ca in shells record the conjunction of an increase of biological activity with supplied of dissolved Mn and nutriments in coastal waters, resulting in an enhanced assimilation of biogenic Mn-rich particles. By combining the most recent generation of laser ablation system and the powerful High Resolution ICP-MS, the spatial resolution could be improved down to 5 to 10 µm crater size and end up in a better constrain of the relative variations of the annual Mn peaks. Such an approach on P. spekii from Lake Tanganyika has definitively a great potential to provide recent and past records on primary productivity associated with the monsoon climate system

    Mn seasonal upwellings recorded in Lake Tanganyika mussels

    No full text
    International audienceBiogenic productivity of Lake Tanganyika is highly dependent on seasonal upwellings of anoxic deep waters. We investigated the shell of freshwater bivalve Pleiodon spekii as a geochemical archive of these periodic hydrological changes tuned by the monsoon regime. The results of a 2-years-long geochemical survey of the coastal waters performed on the dissolved and particulate fractions were put in perspective against laser ablation ICP-MS profiles of Mn in five aragonitic shells from the same lake location. Skeletal Mn profiles in 3 shells are very similar and dominated by episodic peaks that matched the Mn increase recorded in surface waters during the 2002 upwelling, while a shell collected during 2003 dry season detect both 2002 and 2003 upwelling events. Larger shells showing an extremely reduced growth display more than 8Mn peaks suggesting at least an 8 years record of seasonal changes in water composition

    Trophic structure of Lake Tanganyika: Carbon flows in the pelagic food web

    Full text link
    peer reviewedThe sources of carbon for the pelagic fish production in Lake Tanganyika, East Africa, were evaluated in a comprehensive multi-year study. Phytoplankton production was assessed from seasonal in situ 14C and simulated in situ results, using on-board incubator measurements and knowledge of the vertical distributions of chlorophyll and irradiance. Bacterioplankton production was measured on two cruises with the leucine incorporation method. Zooplankton production was calculated from seasonal population samples, the carbon contents of different developmental stages and growth rates derived from published sources. Fish production estimates were based on hydroacoustic assessment of pelagic fish biomass and data on growth rates obtained from length frequency analyses and checked against daily increment rings of fish otoliths. Estimates for primary production (426-662 g C m-2 a-1) were 47-128% higher than previously published values. Bacterioplankton production amounted to about 20% of the primary production. Zooplankton biomass (1 g C m-2) and production (23 g C m-2 a-1) were 50% lower than earlier reported, suggesting that the carbon transfer efficiency from phytoplankton to zooplankton was low, in contrast to earlier speculations. Planktivorous fish biomass (0.4 g C m-2) and production (1.4-1.7 g C m-2 a-1) likewise indicated a low carbon transfer efficiency from zooplankton into planktivorous fish production. Relatively low transfer efficiencies are not unexpected in a deep tropical lake, because of the generally high metabolic losses due to the high temperatures and presumably high costs of predator avoidance. The total fisheries yield in Lake Tanganyika in the mid- 1990s was 0.08-0.14% of pelagic primary production, i.e. within the range of typical values in lakes. Thus, no special mechanisms need be invoked to explain the productivity of fisheries in Lake Tanganyika

    Late Holocene linkages between decade–century scale climate variability and productivity at Lake Tanganyika, Africa

    Full text link
    Microlaminated sediment cores from the Kalya slope region of Lake Tanganyika provide a near-annually resolved paleoclimate record between ~~2,840 and 1,420 cal. yr B.P. demonstrating strong linkages between climate variability and lacustrine productivity. Laminae couplets comprise dark, terrigenous-dominated half couplets, interpreted as low density underflows deposited from riverine sources during the rainy season, alternating with light, planktonic diatomaceous ooze, with little terrigenous component, interpreted as windy/dry season deposits. Laminated portions of the studied cores consist of conspicuous dark and light colored bundles of laminae couplets. Light and dark bundles alternate at decadal time scales. Within dark bundles, both light and dark half couplets are significantly thinner than within light bundles, implying slower sediment accumulation rates during both seasons over those intervals. Time series analyses of laminae thickness patterns demonstrate significant periodicities at interannual¿centennial time scales. Longer time scale periodicities (multidecadal to centennial scale) of light and dark half couplet thicknesses are coherent and in some cases are similar to solar cycle periods on these time scales. Although laminae thickness cycles do not strongly covary with the actual ¿14C record for this same time period, two large ¿14C anomalies are associated with substantial decreases in both light and dark laminae thickness. In contrast to the multidecadal¿ centennial time scale, significant annual to decadal periodicities, which are broadly consistent with ENSO/PDO forcing and their impact on East African climate, are not coherent between light and dark half couplets. The coherency of light¿dark couplets at decadal¿centennial time scales, but not at shorter time scales, is consistent with a model of a long-term relationship between precipitation (recorded in wet season dark laminae thickness) and productivity (light laminae thickness), which is not manifest at shorter time scales. We hypothesize that this coupling results from long-term recharging of internal nutrient loading during wet periods (higher erosion of soil P) and reduced loading during drought intervals. The relationship is not expressed on short time scales during which the dominant control on productivity is wind-driven, dry season upwelling, which is uncorrelated with wet-season precipitation. Our record greatly extends the temporal record of this quasi-periodic behavior throughout the late Holocene and provides the first evidence linking decade- to century-scale episodes of enhanced productivity to enhanced precipitation levels and nutrient recharge in a productive tropical lake

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Full text link
    peer reviewedClimate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change. © 2021, The Author(s)

    A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009

    Get PDF
    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Get PDF
    Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Get PDF
    Measurement(s) : temperature of water, temperature profile Technology Type(s) : digital curation Factor Type(s) : lake location, temporal interval Sample Characteristic - Environment : lake, reservoir Sample Characteristic - Location : global Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14619009Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change

    Limnological variability and pelagic fish abundance (Stolothrissa tanganicae and Lates stappersii) in Lake Tanganyika

    Full text link
    The abundance of two main pelagic fish species in Lake Tanganyika (Stolothrissa tanganicae and Lates stappersii) has always been observed to fluctuate considerably at different time scales. The inverse correlation between the abundance of these species has often been interpreted as the consequence of predator-prey relations (avoidance behaviour by the prey). However, currently the two species often appear spatially segregated in the lake, S. tanganicae dominating in the north while L. stappersii is generally abundant in the south where it feeds mostly on shrimps. A fluctuating abundance of the species is nevertheless observed. As these fish species have a major importance for the fisheries, we investigated the limnological variability in relation to the short-term variability of fish catches. The abundance of S. tanganicae was positively correlated to plankton biomass (r = 0.65), while water transparency (r = 0.56), depth of mixed layer (r = -0.70) and oxygenated water appeared important drivers for the abundance of L. stappersii. Alternating "mixing" and "stable" states of the epilimnion related to seasonal and internal waves variability are probably determinant for the short-term variability in abundance of S. tanganicae and L. stappersii. In the framework of this study, remote sensing has shown a potentially interesting application for fisheries research at Lake Tanganyika. We observed a close correspondence between phytoplankton blooms at the time of trade winds changes and increased catches of S. tanganicae in the south. The anti-correlated abundance of S. tanganicae and L. stappersii probably mainly reflects the underlying fluctuating limnological environment. Fisheries studies need to integrate limnological and planktonic monitoring to better understand large and complex ecosystems such as Lake Tanganyika
    corecore