215 research outputs found

    An unexpected major role for proteasome-catalyzed peptide splicing in generation of T cell epitopes: Is there relevance for vaccine development?

    Get PDF
    Efficient and safe induction of CD8(+) T cell responses is a desired characteristic of vaccines against intracellular pathogens. To achieve this, a new generation of safe vaccines is being developed accommodating single, dominant antigens of pathogens of interest. In particular, the selection of such antigens is challenging, since due to HLA polymorphism the ligand specificities and immunodominance hierarchies of pathogen-specific CD8(+) T cell responses differ throughout the human population. A recently discovered mechanism of proteasome-mediated CD8(+) T cell epitope generation, i.e., by protea-some-catalyzed peptide splicing (PCPS), expands the pool of peptides and antigens, presented by MHC class I HLA molecules. On the cell surface, one-third of the presented self-peptides are generated by PCPS, which coincides with one-fourth in terms of abundance. Spliced epitopes are targeted by CD8(+) T cell responses during infection and, like non-spliced epitopes, can be identified within antigen sequences using a novel in silico strategy. The existence of spliced epitopes, by enlarging the pool of peptides available for presentation by different HLA variants, opens new opportunities for immunotherapies and vaccine design

    Diagnostic yield of NanoString nCounter FusionPlex profiling in soft tissue tumors

    Get PDF
    Diagnostic histopathology of soft tissue tumors can be troublesome as many entities are quite rare and have overlapping morphologic features. Many soft tissue tumors harbor tumor-defining gene translocations, which may provide an important ancillary tool for tumor diagnosis. The NanoString nCounter platform enables multiplex detection of pre-defined gene fusion transcripts in formalin-fixed and paraffin-embedded tissue. A cohort of 104 soft tissue tumors representing 20 different histological types was analyzed for the expression of 174 unique gene fusion transcripts. A tumor-defining gene fusion transcript was detected in 60 cases (58%). Sensitivity and specificity of the NanoString assay calculated against the result of an alternative molecular method were 85% and 100%, respectively. Highest diagnostic coverage was obtained for Ewing sarcoma, synovial sarcoma, myxoid liposarcoma, alveolar rhabdomyosarcoma, and desmoplastic small round cell tumor. For these tumor types, the NanoString assay is a rapid, cost-effective, sensitive, and specific ancillary screening tool for molecular diagnosis. For other sarcomas, additional molecular testing may be required when a translocation transcript is not identified with the current 174 gene fusion panel

    Teachers of mother-tongue education in action

    Get PDF
    In this paper we report on the first year of a two year action-research project in the Netherlands. Fourteen teachers of mother-tongue education worked together to design concept-contextenriched education. Three teachers of higher vocational education with knowledge of action research facilitated the project and an academic researcher from the university (first author of this paper) researched the implementation of this action-research project as the teachers were experiencing it. This paper reports on the knowledge the teachers developed, the materials they produced, and the mothertongue (or L1 concepts and contexts) they applied during the first ten months of the project. With this paper we wish to contribute to the knowledge on how in-service action-research projects develop and elaborate on what lessons may be learned from the first year of an action-research project in which teachers design concept-context enriched education.  Teaching and Teacher Learning (ICLON

    An Unexpected Major Role for Proteasome-Catalyzed Peptide Splicing in Generation of T Cell Epitopes:Is There Relevance for Vaccine Development?

    Get PDF
    Efficient and safe induction of CD8+ T cell responses is a desired characteristic of vaccines against intracellular pathogens. To achieve this, a new generation of safe vaccines is being developed accommodating single, dominant antigens of pathogens of interest. In particular, the selection of such antigens is challenging, since due to HLA polymorphism the ligand specificities and immunodominance hierarchies of pathogen-specific CD8+ T cell responses differ throughout the human population. A recently discovered mechanism of proteasome-mediated CD8+ T cell epitope generation, i.e., by proteasome-catalyzed peptide splicing (PCPS), expands the pool of peptides and antigens, presented by MHC class I HLA molecules. On the cell surface, one-third of the presented self-peptides are generated by PCPS, which coincides with one-fourth in terms of abundance. Spliced epitopes are targeted by CD8+ T cell responses during infection and, like non-spliced epitopes, can be identified within antigen sequences using a novel in silico strategy. The existence of spliced epitopes, by enlarging the pool of peptides available for presentation by different HLA variants, opens new opportunities for immunotherapies and vaccine design.</p

    Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains

    Get PDF
    Intestinal carriage of extended-spectrum beta-lactamase (ESBL) -producing bacteria in food-producing animals and contamination of retail meat may contribute to increased incidences of infections with ESBL-producing bacteria in humans. Therefore, distribution of ESBL genes, plasmids and strain genotypes in Escherichia coli obtained from poultry and retail chicken meat in the Netherlands was determined and defined as ‘poultry-associated’ (PA). Subsequently, the proportion of E. coli isolates with PA ESBL genes, plasmids and strains was quantified in a representative sample of clinical isolates. The E. coli were derived from 98 retail chicken meat samples, a prevalence survey among poultry, and 516 human clinical samples from 31 laboratories collected during a 3-month period in 2009. Isolates were analysed using an ESBL-specific microarray, sequencing of ESBL genes, PCR-based replicon typing of plasmids, plasmid multi-locus sequence typing (pMLST) and strain genotyping (MLST). Six ESBL genes were defined as PA (blaCTX-M-1, blaCTX-M-2, blaSHV-2, blaSHV-12, blaTEM-20, blaTEM-52): 35% of the human isolates contained PA ESBL genes and 19% contained PA ESBL genes located on IncI1 plasmids that were genetically indistinguishable from those obtained from poultry (meat). Of these ESBL genes, 86% were blaCTX-M-1 and blaTEM-52 genes, which were also the predominant genes in poultry (78%) and retail chicken meat (75%). Of the retail meat samples, 94% contained ESBL-producing isolates of which 39% belonged to E. coli genotypes also present in human samples. These findings are suggestive for transmission of ESBL genes, plasmids and E. coli isolates from poultry to humans, most likely through the food chain

    Multi-centre evaluation of a phenotypic extended spectrum β-lactamase detection guideline in the routine setting

    Get PDF
    AbstractThis study aimed to evaluate the routine setting performance of a guideline for phenotypic detection of extended spectrum β-lactamases (ESBLs) in Enterobacteriaceae, recommending ESBL confirmation with Etest or combination disc for isolates with a positive ESBL screen test (i.e. cefotaxime and/or ceftazidime MIC >1 mg/L or an automated system ESBL warning). Twenty laboratories submitted 443 Enterobacteriaceae with a positive ESBL screen test and their confirmation test result (74% Escherichia coli, 12% Enterobacter cloacae, 8% Klebsiella pneumoniae, 3% Proteus mirabilis, 2% Klebsiella oxytoca). Presence of ESBL genes was used as reference test. Accuracy of local phenotypic ESBL detection was 88%. The positive predictive value (PPV) of local screen tests was 70%, and differed per method (Vitek-2: 69%, Phoenix: 68%, disc diffusion: 92%), and species (95% K. pneumoniae-27% K. oxytoca). A low PPV (3%) was observed for isolates with automated system alarm but third-generation cephalosporin MICs <2 mg/L. Local ESBL confirmation had a PPV and negative predictive value (NPV) of 93% and 90%, respectively. Compared with centrally performed confirmation tests, 7% of local tests were misinterpreted. Combination disc was more specific than Etest (91% versus 61%). Confirmation tests were not reliable for P. mirabilis and K. oxytoca (PPV 33% and 38%, respectively, although NPVs were 100%). In conclusion, performance of Etests could be enhanced by education of technicians to improve their interpretation, by genotypic ESBL confirmation of P. mirabilis and K. oxytoca isolates with positive phenotypic ESBL confirmation, and by interpreting isolates with a positive ESBL alarm but an MIC <2 mg/L for cefotaxime and ceftazidime as ESBL-negative

    Dissecting antigen processing and presentation routes in dermal vaccination strategies

    Get PDF
    The skin is an attractive site for vaccination due to its accessibility and presence of immune cells surveilling this barrier. However, knowledge of antigen processing and presentation upon dermal vaccination is sparse. In this study we determined antigen processing routes that lead to CD8(+) T cell activation following dermal DNA tattoo immunization, exploiting a model antigen that contains an immunoproteasome-dependent epitope. In agreement with earlier reports, we found that DNA tattoo immunization of wild type (WT) mice triggered vigorous responses to the immunoproteasome-dependent model epitope, whereas gene-deficient mice lacking the immunoproteasome subunits β5i/LMP7 and β2i/MECL1 failed to respond. Unexpectedly, dermal immunization both of irradiated bone marrow (BM) reconstituted mice in which the BM transplant was of WT origin, and of WT mice transplanted with immunoproteasome subunit-deficient BM induced a CD8(+) T cell response to the immunoproteasome-dependent epitope, implying that both BM and host-derived cells contributed to processing of delivered model antigen. Depletion of radiation-resistant Langerhans cells (LC) from chimeric mice did not diminish tattoo-immunization induced CD8(+) T cell responses in most mice, illustrating that LC were not responsible for antigen processing and CD8(+) T cell priming in tattoo-immunized hosts. We conclude that both BM and non-BM-derived cells contribute to processing and cross-presentation of antigens delivered by dermal DNA tattoo immunization

    Forming a collaborative action research partnership

    Get PDF
    This article describes the complex nature of collaborative relationships, the difficulties of conducting research with others, and the complications of partnerships in educational research. To create and sustain a communicative space in which participants can collaborate to innovate education and curriculum, time and opportunity to develop trust in the group are needed. We report on a collaborative action research project in the Netherlands in which 14 teachers, three facilitators and an academic researcher formed a partnership, and together designed Language 1 education. We find contextual and the communicative conditions are important in the collaborative action research partnership. We use metaphors of facilitative actions – map, magnifying glass, mirror and compass – formulated by Wadsworth to analyze and describe the collaboration. We show that the participants had to come to terms with their roles and responsibilities and, through dialogue and reflection, evolved and learned to contribute to the collaborative action research partnership by sustaining dialogue and utilizing their unique expertise. Keywords: collaborative action research partnership; communicative space; contextual conditions; communicative conditions; communicative actions; Language 1 education; metaphorsTeaching and Teacher Learning (ICLON

    Multi-level Strategy for Identifying Proteasome-Catalyzed Spliced Epitopes Targeted by CD8+ T Cells during Bacterial Infection

    Get PDF
    Proteasome-catalyzed peptide splicing (PCPS) generates peptides that are presented by MHC class I molecules, but because their identification is challenging, the immunological relevance of spliced peptides remains unclear. Here, we developed a reverse immunology-based multi-level approach to identify proteasome-generated spliced epitopes. Applying this strategy to a murine Listeria monocytogenes infection model, we identified two spliced epitopes within the secreted bacterial phospholipase PlcB that primed antigen-specific CD8+ T cells in L. monocytogenes-infected mice. While reacting to the spliced epitopes, these CD8+ T cells failed to recognize the non-spliced peptide parts in the context of their natural flanking sequences. Thus, we here show that PCPS expands the CD8+ T cell response against L. monocytogenes by exposing spliced epitopes on the cell surface. Moreover, our multi-level strategy opens up opportunities to systematically investigate proteins for spliced epitope candidates and thus strategies for immunotherapies or vaccine design
    • …
    corecore