451 research outputs found

    Non-thermal pressure in the outskirts of Abell 2142

    Get PDF
    Clumping and turbulence are expected to affect the matter accreted on to the outskirts of galaxy clusters. To determine their impact on the thermodynamic properties of Abell 2142, we perform an analysis of the X-ray temperature data from XMM-Newton via our SuperModel, a state-of-the-art tool for investigating the astrophysics of the intracluster medium already tested on many individual clusters (since Cavaliere, Lapi & Fusco-Femiano 2009). Using the gas density profile corrected for clumpiness derived by Tchernin et al. (2016), we find evidence for the presence of a non-thermal pressure component required to sustain gravity in the cluster outskirts of Abell 2142, that amounts to about 30 per cent of the total pressure at the virial radius. The presence of the non-thermal component implies the gas fraction to be consistent with the universal value at the virial radius and the electron thermal pressure profile to be in good agreement with that inferred from the SZ data. Our results indicate that the presence of gas clumping and of a non-thermal pressure component are both necessary to recover the observed physical properties in the cluster outskirts. Moreover, we stress that an alternative method often exploited in the literature (included Abell 2142) to determine the temperature profile kBT = Pe/nebasing on a combination of the Sunyaev-Zel'dovich (SZ) pressure Peand of the X-ray electron density nedoes not allow us to highlight the presence of non-thermal pressure support in the cluster outskirts

    A 3D model for carbon monoxide molecular line emission as a potential cosmic microwave background polarization contaminant

    Get PDF
    We present a model for simulating Carbon Monoxide (CO) rotational line emission in molecular clouds, taking account of their 3D spatial distribution in galaxies with different geometrical properties. The model implemented is based on recent results in the literature and has been designed for performing Monte-Carlo simulations of this emission. We compare the simulations produced with this model and calibrate them, both on the map level and on the power spectrum level, using the second release of data from the Planck satellite for the Galactic plane, where the signal-to-noise ratio is highest. We use the calibrated model to extrapolate the CO power spectrum at low Galactic latitudes where no high sensitivity observations are available yet. We then forecast the level of unresolved polarized emission from CO molecular clouds which could contaminate the power spectrum of Cosmic Microwave Background (CMB) polarization B-modes away from the Galactic plane. Assuming realistic levels of the polarization fraction, we show that the level of contamination is equivalent to a cosmological signal with r 720.02. The Monte-Carlo MOlecular Line Emission (MCMole3D) Python package, which implements this model, is being made publicly available

    MUFASA: The strength and evolution of galaxy conformity in various tracers

    Get PDF
    We investigate galaxy conformity using the Mufasa cosmological hydrodynamical simulation. We show a bimodal distribution in galaxy colour with radius, albeit with too many low-mass quenched satellite galaxies compared to observations. Mufasa produces conformity in observed properties such as colour, sSFR, and Hi content; i.e neighbouring galaxies have similar properties. We see analogous trends in other properties such as in environment, stellar age, H2 content, and metallicity. We intro- duce quantifying conformity using S(R), measuring the relative difference in upper and lower quartile properties of the neighbours.We show that low-mass and non-quenched haloes have weak conformity (S(R) < 0.5) extending to large projected radii R in all properties, while high-mass and quenched haloes have strong conformity (S(R) ~ 1) that diminishes rapidly with R and disappears at R & 1 Mpc. S(R) is strongest for environment in low-mass haloes, and sSFR (or colour) in high-mass haloes, and is dominated by one-halo conformity with the exception of Hi in small haloes. Metal- licity shows a curious anti-conformity in massive haloes. Tracking the evolution of conformity for z = 0 galaxies back in time shows that conformity broadly emerges as a late-time (z < 1) phenomenon. However, for fixed halo mass bins, conformity is fairly constant with redshift out to z > 2. These trends are consistent with the idea that strong conformity only emerges once haloes grow above Mufasa’s quenching mass scale of ~ 1012M⊙. A quantitative measure of conformity in various properties, along with its evolution, thus represents a new and stringent test of the impact of quenching on environment within current galaxy formation models.ScopusIS

    A galaxy–halo model for multiple cosmological tracers

    Get PDF
    archiveprefix: arXiv primaryclass: astro-ph.GA slaccitation: %%CITATION = ARXIV:1610.08948;%%archiveprefix: arXiv primaryclass: astro-ph.GA slaccitation: %%CITATION = ARXIV:1610.08948;%%archiveprefix: arXiv primaryclass: astro-ph.GA slaccitation: %%CITATION = ARXIV:1610.08948;%

    Modelling galaxy merger time-scales and tidal destruction

    Full text link

    On the statistics of proto-cluster candidates detected in the Planck all-sky survey

    Get PDF
    Observational investigations of the abundance of massive precursors of local galaxy clusters ("proto-clusters") allow us to test the growth of density perturbations, to constrain cosmological parameters that control it, to test the theory of non-linear collapse and how the galaxy formation takes place in dense environments. The Planck collaboration has recently published a catalogue of >~ 2000 cold extra-galactic sub-millimeter sources, i.e. with colours indicative of z >~ 2, almost all of which appear to be over-densities of star-forming galaxies. They are thus considered as proto-cluster candidates. Their number densities (or their flux densities) are far in excess of expectations from the standard scenario for the evolution of large-scale structure. Simulations based on a physically motivated galaxy evolution model show that essentially all cold peaks brighter than S_545GHz = 500 mJy found in Planck maps after having removed the Galactic dust emission can be interpreted as positive Poisson fluctuations of the number of high-z dusty proto-clusters within the same Planck beam, rather then being individual clumps of physically bound galaxies. This conclusion does not change if an empirical fit to the luminosity function of dusty galaxies is used instead of the physical model. The simulations accurately reproduce the statistic of the Planck detections and yield distributions of sizes and ellipticities in qualitative agreement with observations. The redshift distribution of the brightest proto-clusters contributing to the cold peaks has a broad maximum at 1.5 <~ z <~ 3. Therefore follow-up of Planck proto-cluster candidates will provide key information on the high-z evolution of large scale structure

    KiDS-450: testing extensions to the standard cosmological model

    Get PDF
    We test extensions to the standard cosmological model with weak gravitational lensing tomography using 450 deg2^2 of imaging data from the Kilo Degree Survey (KiDS). In these extended cosmologies, which include massive neutrinos, nonzero curvature, evolving dark energy, modified gravity, and running of the scalar spectral index, we also examine the discordance between KiDS and cosmic microwave background measurements from Planck. The discordance between the two datasets is largely unaffected by a more conservative treatment of the lensing systematics and the removal of angular scales most sensitive to nonlinear physics. The only extended cosmology that simultaneously alleviates the discordance with Planck and is at least moderately favored by the data includes evolving dark energy with a time-dependent equation of state (in the form of the w0−waw_0-w_a parameterization). In this model, the respective S8=σ8Ωm/0.3S_8 = \sigma_8 \sqrt{\Omega_{\rm m}/0.3} constraints agree at the 1σ1\sigma level, and there is `substantial concordance' between the KiDS and Planck datasets when accounting for the full parameter space. Moreover, the Planck constraint on the Hubble constant is wider than in LCDM and in agreement with the Riess et al. (2016) direct measurement of H0H_0. The dark energy model is moderately favored as compared to LCDM when combining the KiDS and Planck measurements, and remains moderately favored after including an informative prior on the Hubble constant. In both of these scenarios, marginalized constraints in the w0−waw_0-w_a plane are discrepant with a cosmological constant at the 3σ3\sigma level. Moreover, KiDS constrains the sum of neutrino masses to 4.0 eV (95% CL), finds no preference for time or scale dependent modifications to the metric potentials, and is consistent with flatness and no running of the spectral index. The analysis code is public at https://github.com/sjoudaki/kids450Comment: 22 pages, 16 figures, results unchanged, version accepted for publication by MNRA

    An evolutionary missing link? A modest-mass early-type galaxy hosting an oversized nuclear black hole

    Get PDF
    SAGE1C J053634.78-722658.5 is a galaxy at redshift z = 0.14, discovered behind the Large Magellanic Cloud in the Spitzer Space Telescope`Surveying the Agents of Galaxy Evolution' Spectroscopy survey. It has very strong silicate emission at 10 ÎŒm but negligible far-IR and UV emission. This makes it a candidate for a bare active galactic nuclei (AGN) source in the IR, perhaps seen pole-on, without significant IR emission from the host galaxy. In this paper we present optical spectra taken with the Southern African Large Telescope to investigate the nature of the underlying host galaxy and its AGN. We find broad H α emission characteristic of an AGN, plus absorption lines associated with a mature stellar population (>9 Gyr), and refine its redshift determination to z = 0.1428 ± 0.0001. There is no evidence for any emission lines associated with star formation. This remarkable object exemplifies the need for separating the emission from any AGN from that of the host galaxy when employing IR diagnostic diagrams. We estimate the black hole mass, MBH = 3.5 ± 0.8 × 108 M⊙, host galaxy mass, M_stars=2.5^{2.5}_{1.2}× 10^{10} M⊙, and accretion luminosity, Lbol(AGN) = 5.3 ± 0.4 × 1045 erg s-1 (≈12 per cent of the Eddington luminosity), and find the AGN to be more prominent than expected for a host galaxy of this modest size. The old age is in tension with the downsizing paradigm in which this galaxy would recently have transformed from a star-forming disc galaxy into an early-type, passively evolving galaxy
    • 

    corecore