15 research outputs found

    Crustal carbonate build-up as a driver for Earth’s oxygenation

    Get PDF
    Oxygenation of Earth’s atmosphere and oceans played a pivotal role in the evolution of the surface environment and life. It is thought that the rise in oxygen over Earth’s history was driven by an increasing availability of the photosynthetic limiting nutrient phosphate combined with declining oxygen-consuming inputs from the mantle and crust. However, it has been difficult to assess whether these processes alone can explain Earth’s oxygenation history. Here we develop a theoretical framework for the long-term global oxygen, phosphorus and carbon cycles, incorporating potential trajectories for the emergence of continents, the degassing of mantle volatiles and the resulting increase in the size of the crustal carbonate reservoir. We find that we can adequately simulate the Earth’s oxygenation trajectory in both the atmosphere and oceans, alongside reasonable reconstructions of planetary temperature, atmospheric carbon dioxide concentration, phosphorus burial records and carbon isotope ratios. Importantly, this is only possible when we include the accumulation of carbonates in the crust, which permits ever-increasing carbon recycling rates through weathering and degassing. This carbonate build-up is a missing factor in models of Earth’s coupled climate, nutrient and oxygen evolution and is important for reconstructing Earth’s history and potential exoplanet biogeochemistry

    Improving nitrogen cycling in a land surface model (CLM5) to quantify soil N2O, NO, and NH3 emissions from enhanced rock weathering with croplands

    Get PDF
    Surficial enhanced rock weathering (ERW) is a land-based carbon dioxide removal (CDR) strategy that involves applying crushed silicate rock (e.g., basalt) to agricultural soils. However, unintended biogeochemical interactions with the nitrogen cycle may arise through ERW increasing soil pH as basalt grains undergo dissolution that may reinforce, counteract, or even offset the climate benefits from carbon sequestration. Increases in soil pH could drive changes in the soil emissions of key non-CO2 greenhouse gases, e.g., nitrous oxide (N2O), and trace gases, e.g., nitric oxide (NO) and ammonia (NH3), that affect air quality and crop and human health. We present the development and implementation of a new improved nitrogen cycling scheme for the Community Land Model v5 (CLM5), the land component of the Community Earth System Model, allowing evaluation of ERW effects on soil gas emissions. We base the new parameterizations on datasets derived from soil pH responses of N2O, NO, and NH3 in ERW field trial and mesocosm experiments with crushed basalt. These new capabilities involve the direct implementation of routines within the CLM5 N cycle framework, along with asynchronous coupling of soil pH changes estimated through an ERW model. We successfully validated simulated “control” (i.e., no ERW) seasonal cycles of soil N2O, NO, and NH3 emissions against a wide range of global emission inventories. We benchmark simulated mitigation of soil N2O fluxes in response to ERW against a subset of data from ERW field trials in the US Corn Belt. Using the new scheme, we provide a specific example of the effect of large-scale ERW deployment with croplands on soil nitrogen fluxes across five key regions with high potential for CDR with ERW (North America, Brazil, Europe, India, and China). Across these regions, ERW implementation led to marked reductions in N2O and NO (both 18 %), with moderate increases in NH3 (2 %). While further developments are still required in our implementations when additional ERW data become available, our improved N cycle scheme within CLM5 has utility for investigating the potential of ERW point-source and regional effects of soil N2O, NO, and NH3 fluxes in response to current and future climates. This framework also provides the basis for assessing the implications of ERW for air quality given the role of NO in tropospheric ozone formation, as well as both NO and NH3 in inorganic aerosol formation

    The composition and weathering of the continents over geologic time

    Get PDF
    The composition of continental crust records the balance between construction by tectonics and destruction by physical and chemical erosion. Quantitative constraints on how igneous addition and chemical weathering have modified the continents’ bulk composition are essential for understanding the evolution of geodynamics and climate. Using novel data analytic techniques we have extracted temporal trends in sediments’ protolith composition and weathering intensity from the largest available compilation of sedimentary major element compositions: ∼15,000 samples from 4.0 Ga to the present. We find that the average Archean upper continental crust was silica-rich and had a similar compositional diversity to modern continents. This is consistent with an early Archean, or earlier, onset of plate tectonics. In the Archean, chemical weathering sequestered ∼25 % more CO2 per mass eroded for the same weathering intensity than in subsequent time periods, consistent with carbon mass balance despite higher Archean outgassing rates and more limited continental exposure. Since 2.0 Ga, over long (>0.5 Gyr) timescales, crustal weathering intensity has remained relatively constant. On shorter timescales over the Phanerozoic, weathering intensity is correlated to global climate state, consistent with a weathering feedback acting in response to changes in CO2 sources or sinks

    A case for low atmospheric oxygen levels during Earth's middle history

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148645/1/Planavsky_et_al_2018_ETLS-low_O2_in_the_Proterozoic.pd

    Uranium in iron formations and the rise of atmospheric oxygen

    No full text
    International audienceThe concept of the Great Oxidation Event (GOE), during which atmospheric oxygen rose precipitously and perhaps to near-modern levels around 2.4-2.1 billion years ago (Ga), has become entrenched in our views on secular atmospheric evolution. Multiple proxies confirm a permanent shift towards more oxygenated conditions at some time near the Archean-Proterozoic boundary. However, it remains unclear precisely when this transition occurred, due in part to the likely temporal variability in those early levels and different sensitivities of the proxies utilized to track atmospheric oxygen partial pressures. Here, we provide a new look at the timing and magnitude of early atmospheric oxygenation through the record of uranium (U) concentrations in iron formations (IF). Just as IF are important archives of the redox state of seawater, concentrations of redox-sensitive U in IF are faithful proxies for oxidative continental weathering and associated delivery of dissolved U to seawater. Our dataset suggests that there was an increase in U redox cycling and transport at ca. 2.47 Ga, just before the permanent loss of mass-independent sedimentary sulfur isotope anomalies traditionally used to define the onset of the GOE. Further, there is significant temporal variability in the IF U record that we propose reflects dynamic Precambrian redox conditions. We provide additional support for earlier suggestions that the GOE was a protracted event marked by vacillating oxygen levels
    corecore