151 research outputs found

    Wfs1-deficient mice display altered function of serotonergic system and increased behavioral response to antidepressants

    Get PDF
    It has been shown that mutations in the WFS1 gene make humans more susceptible to mood disorders. Besides that, mood disorders are associated with alterations in the activity of serotonergic and noradrenergic systems. Therefore, in this study, the effects of imipramine, an inhibitor of serotonin (5-HT) and noradrenaline (NA) reuptake, and paroxetine, a selective inhibitor of 5-HT reuptake, were studied in tests of behavioral despair. The tail suspension test (TST) and forced swimming test (FST) were performed in Wfs1-deficient mice. Simultaneously, gene expression and monoamine metabolism studies were conducted to evaluate changes in 5-HT- and NA-ergic systems of Wfs1-deficient mice. The basal immobility time of Wfs1-deficient mice in TST and FST did not differ from that of their wild-type littermates. However, a significant reduction of immobility time in response to lower doses of imipramine and paroxetine was observed in homozygous Wfs1-deficient mice, but not in their wild-type littermates. In gene expression studies, the levels of 5-HT transporter (SERT) were significantly reduced in the pons of homozygous animals. Monoamine metabolism was assayed separately in the dorsal and ventral striatum of naive mice and mice exposed for 30 min to brightly lit motility boxes. We found that this aversive challenge caused a significant increase in the levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA), a metabolite of 5-HT, in the ventral and dorsal striatum of wild-type mice, but not in their homozygous littermates. Taken together, the blunted 5-HT metabolism and reduced levels of SERT are a likely reason for the elevated sensitivity of these mice to the action of imipramine and paroxetine. These changes in the pharmacological and neurochemical phenotype of Wfs1-deficient mice may help to explain the increased susceptibility of Wolfram syndrome patients to depressive states

    Intermittent applied mechanical loading induces subchondral bone thickening that may be intensified locally by contiguous articular cartilage lesions

    Get PDF
    Objectives: Changes in subchondral bone (SCB) and cross-talk with articular cartilage (AC) have been linked to osteoarthritis (OA). Using micro-computed tomography (micro-CT) this study: (1) examines changes in SCB architecture in a non-invasive loading mouse model in which focal AC lesions are induced selectively in the lateral femur, and (2) determines any modifications in the contralateral knee, linked to changes in gait, which might complicate use of this limb as an internal control. Methods: Right knee joints of CBA mice were loaded: once with 2weeks of habitual use (n=7), for 2weeks (n=8) or for 5weeks (n=5). Both left (contralateral) and right (loaded) knees were micro-CT scanned and the SCB and trabecular bone analysed. Gait analysis was also performed. Results: These analyses showed a significant increase in SCB thickness in the lateral compartments in joints loaded for 5weeks, which was most marked in the lateral femur; the contralateral non-loaded knee also showed transient SCB thickening (loaded once and repetitively). Epiphyseal trabecular bone BV/TV and trabecular thickness were also increased in the lateral compartments after 5 weeks of loading, and in all joint compartments in the contralateral knee. Gait analysis showed that applied loading only affected gait in the contralateral himd-limb in all groups of mice from the second week after the first loading episode. Conclusions: These data indicate a spatial link between SCB thickening and AC lesions following mechanical trauma, and the clear limitations associated with the use of contralateral joints as controls in such OA models, and perhaps in OA diagnosis

    Winegrowers’ decision-making: A pan-European perspective on pesticide use and inter-row management

    Get PDF
    European viticultural landscapes not only support a significant share of rural livelihoods and cultural traditions, but also conserve biodiversity and sustain various ecosystem services. Winegrowers' practices of inter-row management (including whether to have vegetation in the inter-rows, type of vegetation, duration of vegetation cover, and soil tillage) and pesticide use (including herbicides in the inter-rows, fungicides, insecticides, and pheromone dispensers as an alternative) can affect these services. This study aims to understand winegrowers' decision-making driven by their personal characteristics, attitudes and beliefs towards viticultural practices, physical properties of vineyards, and farm management characteristics in five European winegrowing regions. These include Palatinate in Germany, Leithaberg in Austria, Tarnave in Romania, Bordeaux in France, and Montilla-Moriles in Spain. Based on a questionnaire survey, we constructed decision trees for each behaviour per case study as well as in a generic European model. We found factors that best explain how winegrowers manage their inter-rows and use pesticides. Results showed that not only do behaviours of winegrowers vary drastically across the case studies, but also the factors that explain most behaviours: farmers' attitudes and beliefs and farm management characteristics. This implies the importance of attitudes and beliefs – which are under-researched as compared to other factors – in understanding farmers’ behaviour. With the driving factors found to vary per case study, our results also imply the need for locally-adapted policies. Furthermore, our results suggest that the effects of climate change on European viticultural landscapes concern not only shifting production regions and changes in yields, but also changing pressure of pests and diseases. Any long-term behavioural change requires efforts from many stakeholders.This research was funded by the research project SECBIVIT which was funded through the 2017–2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND programme, with the funding organisations: Agencia Estatal de Investigación (Ministerio de ciencia e innovación/Spain), Austrian Science Fund (FWF) (grant number I 4025-B32), Federal Ministry of Education and Research (BMBF/Germany) through VDI/VDE Innovation + Technik GmbH, DLR Projektträger, French National Research Agency (ANR), Netherlands Organisation for Scientific Research (NWO), National Science Foundation (Grant #1850943) and Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI). We would like to thank all winegrowers who participated in the focus groups, online questionnaires and personal interviews and the extension services who distributed our online questionnaire through their e-mail distribution list (DLR-Rheinpfalz)

    Roles of Nutrient Limitation on Western Lake Erie CyanoHAB Toxin Production

    Get PDF
    Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: a Microcystis spp. bloom in Maumee Bay that extends throughout the western basin, and a Planktothrix spp. bloom in Sandusky Bay. Recently, the USA and Canada agreed to a 40% phosphorus (P) load reduction to lessen the severity of the WLE blooms. To investigate phosphorus and nitrogen (N) limitation of biomass and toxin production in WLE CyanoHABs, we conducted in situ nutrient addition and 40% dilution microcosm bioassays in June and August 2019. During the June Sandusky Bay bloom, biomass production as well as hepatotoxic microcystin and neurotoxic anatoxin production were N and P co-limited with microcystin production becoming nutrient deplete under 40% dilution. During August, the Maumee Bay bloom produced microcystin under nutrient repletion with slight induced P limitation under 40% dilution, and the Sandusky Bay bloom produced anatoxin under N limitation in both dilution treatments. The results demonstrate the importance of nutrient limitation effects on microcystin and anatoxin production. To properly combat cyanotoxin and cyanobacterial biomass production in WLE, both N and P reduction efforts should be implemented in its watershed

    Analysis of meniscal degeneration and meniscal gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Menisci play a vital role in load transmission, shock absorption and joint stability. There is increasing evidence suggesting that OA menisci may not merely be bystanders in the disease process of OA. This study sought: 1) to determine the prevalence of meniscal degeneration in OA patients, and 2) to examine gene expression in OA meniscal cells compared to normal meniscal cells.</p> <p>Methods</p> <p>Studies were approved by our human subjects Institutional Review Board. Menisci and articular cartilage were collected during joint replacement surgery for OA patients and lower limb amputation surgery for osteosarcoma patients (normal control specimens), and graded. Meniscal cells were prepared from these meniscal tissues and expanded in monolayer culture. Differential gene expression in OA meniscal cells and normal meniscal cells was examined using Affymetrix microarray and real time RT-PCR.</p> <p>Results</p> <p>The grades of meniscal degeneration correlated with the grades of articular cartilage degeneration (r = 0.672; P < 0.0001). Many of the genes classified in the biological processes of immune response, inflammatory response, biomineral formation and cell proliferation, including major histocompatibility complex, class II, DP alpha 1 (<it>HLA-DPA1</it>), integrin, beta 2 (<it>ITGB2</it>), ectonucleotide pyrophosphatase/phosphodiesterase 1 (<it>ENPP1</it>), ankylosis, progressive homolog (<it>ANKH</it>) and fibroblast growth factor 7 (<it>FGF7</it>), were expressed at significantly higher levels in OA meniscal cells compared to normal meniscal cells. Importantly, many of the genes that have been shown to be differentially expressed in other OA cell types/tissues, including ADAM metallopeptidase with thrombospondin type 1 motif 5 (<it>ADAMTS5</it>) and prostaglandin E synthase (<it>PTGES</it>), were found to be expressed at significantly higher levels in OA meniscal cells. This consistency suggests that many of the genes detected in our study are disease-specific.</p> <p>Conclusion</p> <p>Our findings suggest that OA is a whole joint disease. Meniscal cells may play an active role in the development of OA. Investigation of the gene expression profiles of OA meniscal cells may reveal new therapeutic targets for OA therapy and also may uncover novel disease markers for early diagnosis of OA.</p

    Predicting sulfotyrosine sites using the random forest algorithm with significantly improved prediction accuracy

    Get PDF
    addresses: School of Biosciences, University of Exeter, Exeter EX4 5DE, UK. [email protected]: PMCID: PMC2777180types: Journal Article; Research Support, Non-U.S. Gov't© 2009 Yang; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Tyrosine sulfation is one of the most important posttranslational modifications. Due to its relevance to various disease developments, tyrosine sulfation has become the target for drug design. In order to facilitate efficient drug design, accurate prediction of sulfotyrosine sites is desirable. A predictor published seven years ago has been very successful with claimed prediction accuracy of 98%. However, it has a particularly low sensitivity when predicting sulfotyrosine sites in some newly sequenced proteins

    Proteoglycan-4 Regulates Fibroblast to Myofibroblast Transition and Expression of Fibrotic Genes in the Synovium

    Get PDF
    Background: Synovial tissue fibrosis is common in advanced OA with features including the presence of stress fiber-positive myofibroblasts and deposition of cross-linked collagen type-I. Proteoglycan-4 (PRG4) is a mucinous glycoprotein secreted by synovial fibroblasts and is a major component of synovial fluid. PRG4 is a ligand of the CD44 receptor. Our objective was to examine the role of PRG4-CD44 interaction in regulating synovial tissue fibrosis in vitro and in vivo. Methods: OA synoviocytes were treated with TGF-β ± PRG4 for 24h and α-SMA content was determined using immunofluorescence. Rhodamine-labeled rhPRG4 was incubated with OA synoviocytes ± anti-CD44 or isotype control antibodies and cellular uptake of rhPRG4 was determined following a 30-min incubation and α-SMA expression following a 24-h incubation. HEK-TGF-β cells were treated with TGF-β ± rhPRG4 and Smad3 phosphorylation was determined using immunofluorescence and TGF-β/Smad pathway activation was determined colorimetrically. We probed for stress fibers and focal adhesions (FAs) in TGF-β-treated murine fibroblasts and fibroblast migration was quantified ± rhPRG4. Synovial expression of fibrotic markers: α-SMA, collagen type-I, and PLOD2 in Prg4 gene-trap (Prg4GT) and recombined Prg4GTR animals were studied at 2 and 9 months of age. Synovial expression of α-SMA and PLOD2 was determined in 2-month-old Prg4GT/GT&Cd44−/− and Prg4GTR/GTR&Cd44−/− animals. Results: PRG4 reduced α-SMA content in OA synoviocytes (p \u3c 0.001). rhPRG4 was internalized by OA synoviocytes via CD44 and CD44 neutralization attenuated rhPRG4’s antifibrotic effect (p \u3c 0.05). rhPRG4 reduced pSmad3 signal in HEKTGF- β cells (p \u3c 0.001) and TGF-β/Smad pathway activation (p \u3c 0.001). rhPRG4 reduced the number of stress fiberpositive myofibroblasts, FAs mean size, and cell migration in TGF-β-treated NIH3T3 fibroblasts (p \u3c 0.05). rhPRG4 inhibited fibroblast migration in a macrophage and fibroblast co-culture model without altering active or total TGF-β levels. Synovial tissues of 9-month-old Prg4GT/GT animals had higher α-SMA, collagen type-I, and PLOD2 (p \u3c 0.001) content and Prg4 re-expression reduced these markers (p \u3c 0.01). Prg4 re-expression also reduced α-SMA and PLOD2 staining in CD44-deficient mice. Conclusion: PRG4 is an endogenous antifibrotic modulator in the joint and its effect on myofibroblast formation is partially mediated by CD44, but CD44 is not required to demonstrate an antifibrotic effect in vivo

    Parkinson’s disease mouse models in translational research

    Get PDF
    Animal models with high predictive power are a prerequisite for translational research. The closer the similarity of a model to Parkinson’s disease (PD), the higher is the predictive value for clinical trials. An ideal PD model should present behavioral signs and pathology that resemble the human disease. The increasing understanding of PD stratification and etiology, however, complicates the choice of adequate animal models for preclinical studies. An ultimate mouse model, relevant to address all PD-related questions, is yet to be developed. However, many of the existing models are useful in answering specific questions. An appropriate model should be chosen after considering both the context of the research and the model properties. This review addresses the validity, strengths, and limitations of current PD mouse models for translational research
    corecore