92 research outputs found

    Frequent alterations in p16/CDKN2A identified by immunohistochemistry and FISH in chordoma

    Get PDF
    The expression of p16/CDKN2A, the second most commonly inactivated tumour suppressor gene in cancer, is lost in the majority of chordomas. However, the mechanism(s) leading to its inactivation and contribution to disease progression have only been partially addressed using small patient cohorts. We studied 384 chordoma samples from 320 patients by immunohistochemistry and found that p16 protein was lost in 53% of chordomas and was heterogeneously expressed in these tumours. To determine if CDKN2A copy number loss could explain the absence of p16 protein expression we performed fluorescence in situ hybridisation (FISH) for CDKN2A on consecutive tissue sections. CDKN2A copy number status was altered in 168 of 274 (61%) of samples and copy number loss was the most frequent alteration acquired during clinical disease progression. CDKN2A homozygous deletion was always associated with p16 protein loss but only accounted for 33% of the p16‐negative cases. The remaining immunonegative cases were associated with disomy (27%), monosomy (12%), heterozygous loss (20%) and copy number gain (7%) of CDKN2A, supporting the hypothesis that loss of protein expression might be achieved via epigenetic or post‐transcriptional regulatory mechanisms. We identified that mRNA levels were comparable in tumours with and without p16 protein expression, but other events including DNA promoter hypermethylation, copy number neutral loss of heterozygosity and expression of candidate microRNAs previously implicated in the regulation of CDKN2A expression were not identified to explain the protein loss. The data argue that p16 loss in chordoma is commonly caused by a post‐transcriptional regulatory mechanism that is yet to be defined

    Bifunctional ultraviolet/ultrasound responsive composite TiO2/polyelectrolyte microcapsules

    Get PDF
    Designing and fabricating multifunctional microcapsules are of considerable interest in both academic and industrial research aspects. This work reports an innovative approach to fabricate composite capsules with high UV and ultrasound responsive functionalities that can be used as external triggers for controlled release, yet with enhanced mechanical strength that can make them survive in a harsh environment. Needle-like TiO2 nanoparticles (NPs) were produced in situ into layer-by-layer (LbL) polyelectrolyte (PE) shells through the hydrolysis of titanium butoxide (TIBO). These rigid TiO2 NPs yielded the formed capsules with excellent mechanical strength, showing a free standing structure. A possible mechanism is proposed for the special morphology formation of the TiO2 NPs and their reinforcing effects. Synergistically, their response to UV and ultrasound was visualized via SEM, with the results showing an irreversible shell rapture upon exposure to either UV or ultrasound irradiation. As expected, the release studies revealed that the dextran release from the TiO2/PE capsules was both UV-dependent and ultrasound-dependent. Besides, the biocompatibility of the capsules with the incorporation of amorphous TiO2 NPs was confirmed by an MTT assay experiment. All these pieces of evidence suggested a considerable potential medicinal application of TiO2/PE capsules for controlled drug delivery

    A statistical approach to estimating the strength of cell-cell interactions under the differential adhesion hypothesis

    Get PDF
    International audienceBACKGROUND: The Differential Adhesion Hypothesis (DAH) is a theory of the organization of cells within a tissue which has been validated by several biological experiments and tested against several alternative computational models. RESULTS: In this study, a statistical approach was developed for the estimation of the strength of adhesion, incorporating earlier discrete lattice models into a continuous marked point process framework. This framework allows to describe an ergodic Markov Chain Monte Carlo algorithm that can simulate the model and reproduce empirical biological patterns. The estimation procedure, based on a pseudo-likelihood approximation, is validated with simulations, and a brief application to medulloblastoma stained by beta-catenin markers is given. CONCLUSION: Our model includes the strength of cell-cell adhesion as a statistical parameter. The estimation procedure for this parameter is consistent with experimental data and would be useful for high-throughput cancer studies

    Survivin, a molecular target for therapeutic interventions in squamous cell carcinoma

    Full text link

    Sclerosing melanocytic lesions (sclerosing melanomas with nevoid features and sclerosing nevi with pseudomelanomatous features) – an analysis of 90 lesions

    No full text
    Sclerosing melanocytic lesions, which are characterized by either focal or diffuse sclerosis in the dermal component and atypical proliferation of predominantly nevoid melanocytes, remain poorly defined. Our aim was to analyze systematically their morphologic spectrum, especially the distinction between sclerosing melanocytic nevus and sclerosing melanoma, which has not been well documented

    Theta Burst Stimulation Enhances Connectivity of the Dorsal Attention Network in Young Healthy Subjects: An Exploratory Study

    No full text
    We examined effects of theta burst stimulation (TBS) applied over two distinct cortical areas (the right inferior frontal gyrus and the left superior parietal lobule) on the Stroop task performance in 20 young healthy subjects. Neural underpinnings of the behavioral effect were tested using fMRI. A single session of intermittent TBS of the left superior parietal lobule induced certain cognitive speed enhancement and significantly increased resting-state connectivity of the dorsal attention network. This is an exploratory study that prompts further research with multiple-session TBS in subjects with cognitive impairment

    Association between Sperm Morphology and Altered Sperm microRNA Expression

    No full text
    Evaluation of male infertility has been based on semen analysis for years. As this method can be subjective at times, there is a scientific tendency to discover stable and quantifiable biomarkers. This study included 28 couples who underwent an in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycle. The couples were assigned into two groups, according to sperm morphology. Couples where the males were normozoospermic were placed in the control group (15 participants), while couples where males had teratozoospermia were placed in the study group (13 participants). Thirteen candidate miRNAs were selected for qPCR analysis, based on our literature search. We determined significant under-expression of nine miRNAs (miR-10a-5p/-15b-5p/-26a-5p/-34b-3p/-122-5p/-125b-5p/-191-5p/-296-5p and let-7a-5p) in spermatozoa from patients with teratozoospermia compared to the controls, whereas expression levels of four miRNAs (miR-92a-3p/-93-3p/-99b-5p/-328-3p) did not significantly differ between the study and control groups. The expression levels of all 13 included miRNAs were significantly positively correlated with each other and significantly positively associated with spermatozoa morphology, excluding miR-99b-5p. There were no other significant associations between miRNA expression and sperm quality parameters. Only expression levels of miR-99b-5p were significantly positively correlated with good-quality day 3 embryo rate (ρ = 0.546; p = 0.003), while other variables of the IVF/ICSI cycle outcome showed no significant associations with miRNA expression profiles. This is one of the rare studies providing an insight directly into miRNA profiles in regard to sperm morphology. We identified nine miRNAs that could serve as biomarkers of spermatozoa quality in regard to teratozoospermia
    corecore