16 research outputs found

    The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides

    Get PDF
    The actions of polymyxin B, rabbit polymorphonuclear lysosome extracts, 14 polycationic peptides (including defensin NP-2, cecropin P1, lactoferricin B, and active peptides from cationic protein 18 and bactenecin), EDTA, and Tris on Brucella spp. were studied, with other gram-negative bacteria as controls. Brucella spp. were comparatively resistant to all of the agents listed above and bound less polymyxin B, and their outer membranes (OMs) were neither morphologically altered nor permeabilized to lysozyme by polymyxin B concentrations, although both effects were observed for controls. EDTA and peptides increased or accelerated the partition of the hydrophobic probe N-phenyl-naphthylamine into Escherichia coli and Haemophilus influenzae OMs but had no effect on Brucella OMs. Since Brucella and H. influenzae OMs are permeable to hydrophobic compounds (G. Martínez de Tejada and I. Moriyón, J. Bacteriol. 175:5273-5275, 1993), the results show that such unusual permeability is not necessarily related to resistance to polycations. Although rough (R) B. abortus and B. ovis were more resistant than the controls were, there were qualitative and quantitative differences with smooth (S) brucellae; this may explain known host range and virulence differences. Brucella S-lipopolysaccharides (LPSs) had reduced affinities for polycations, and insertion of Brucella and Salmonella montevideo S-LPSs into the OM of a Brucella R-LPS mutant increased and decreased, respectively, its resistance to cationic peptides. The results show that the core lipid A of Brucella LPS plays a major role in polycation resistance and that O-chain density also contributes significantly. It is proposed that the features described above contribute to Brucella resistance to the oxygen-independent systems of phagocytes

    Brucella-Salmonella lipopolysaccharide chimeras are less permeable to hydrophobic probes and more sensitive to cationic peptides and EDTA than are their native Brucella sp. counterparts

    Get PDF
    A rough (R) Brucella abortus 45/20 mutant was more sensitive to the bactericidal activity of polymyxin B and lactoferricin B than was its smooth (S) counterpart but considerably more resistant than Salmonella montevideo. The outer membrane (OM) and isolated lipopolysaccharide (LPS) of S. montevideo showed a higher affinity for these cationic peptides than did the corresponding B. abortus OM and LPS. We took advantage of the moderate sensitivity of R B. abortus to cationic peptides to construct live R B. abortus-S-LPS chimeras to test the activities of polymyxin B, lactoferricin B, and EDTA. Homogeneous and abundant peripheral distribution of the heterologous S-LPS was observed on the surface of the chimeras, and this coating had no effect on the viability or morphology of the cells. When the heterologous LPS corresponded to the less sensitive bacterium S B. abortus S19, the chimeras were more resistant to cationic peptides; in contrast, when the S-LPS was from the more sensitive bacterium S. montevideo, the chimeras were more susceptible to the action of peptides and EDTA. A direct correlation between the amount of heterologous S-LPS on the surface of chimeric Brucella cells and peptide sensitivity was observed. Whereas the damage produced by polymyxin B in S. montevideo and B. abortus-S. montevideo S-LPS chimeras was manifested mainly as OM blebbing and inner membrane rolling, lactoferricin B caused inner membrane detachment, vacuolization, and the formation of internal electron-dense granules in these cells. Native S and R B. abortus strains were permeable to the hydrophobic probe N-phenyl-1-naphthylamine (NPN). In contrast, only reduced amounts of NPN partitioned into the OMs of the S. montevideo and B. abortus-S. montevideo S-LPS chimeras. Following peptide exposure, accelerated NPN uptake similar to that observed for S. montevideo was detected for the B. abortus-S. montevideo LPS chimeras. The partition of NPN into native or EDTA-, polymyxin B-, or lactoferricin B-treated LPS micelles of S. montevideo or B. abortus mimicked the effects observed with intact cells, and this was confirmed by using micelle hybrids of B. abortus and S. montevideo LPSs. The results showed that LPS is the main cause of B. abortus' resistance to bactericidal cationic peptides, the OM-disturbing action of divalent cationic chelants, and OM permeability to hydrophobic substances. It is proposed that these three features are related to the ability of Brucella bacteria to multiply within phagocytes

    Septins Regulate Bacterial Entry into Host Cells

    Get PDF
    Background: Septins are conserved GTPases that form filaments and are required in many organisms for several processes including cytokinesis. We previously identified SEPT9 associated with phagosomes containing latex beads coated with the Listeria surface protein InlB. Methodology/Principal Findings: Here, we investigated septin function during entry of invasive bacteria in non-phagocytic mammalian cells. We found that SEPT9, and its interacting partners SEPT2 and SEPT11, are recruited as collars next to actin at the site of entry of Listeria and Shigella. SEPT2-depletion by siRNA decreased bacterial invasion, suggesting that septins have roles during particle entry. Incubating cells with InlB-coated beads confirmed an essential role for SEPT2. Moreover, SEPT2-depletion impaired InlB-mediated stimulation of Met-dependent signaling as shown by FRET. Conclusions/Significance: Together these findings highlight novel roles for SEPT2, and distinguish the roles of septin an

    The outer membrane of Brucella ovis shows increased permeability to hydrophobic probes and is more susceptible to cationic peptides than are the outer membranes of mutant rough Brucella abortus strains

    Get PDF
    The permeability of the outer membrane (OM) to hydrophobic probes and its susceptibility to bactericidal cationic peptides were investigated for natural rough Brucella ovis and for mutant rough Brucella abortus strains. The OM of B. ovis displayed an abrupt and faster kinetic profile than rough B. abortus during the uptake of the hydrophobic probe N-phenyl-naphthylamine. B. ovis was more sensitive than rough B. abortus to the action of cationic peptides. Bactenecins 5 and 7 induced morphological alterations on the OMs of both rough Brucella strains. B. ovis lipopolysaccharide (LPS) captured considerably more polymyxin B than LPSs from both rough and smooth B. abortus strains. Polymyxin B, poly-L-lysine, and poly-L-ornithine produced a thick coating on the surfaces of both strains, which was more evident in B. ovis than in rough B. abortus. The distinct functional properties of the OMs of these two rough strains correlate with some structural differences of their OMs and with their different biological behaviors in animals and culture cells

    Evaluation of the effects of erythritol on gene expression in Brucella abortus

    Get PDF
    Bacteria of the genus Brucella have the unusual capability to catabolize erythritol and this property has been associated with their virulence mainly because of the presence of erythritol in bovine foetal tissues and because the attenuated S19 vaccine strain is the only Brucella strain unable to oxydize erythritol. In this work we have analyzed the transcriptional changes produced in Brucella by erythritol by means of two high throughput approaches: RNA hybridization against a microarray containing most of Brucella ORF's constructed from the Brucella ORFeome and next generation sequencing of Brucella mRNA in an Illumina GAIIx platform. The results obtained showed the overexpression of a group of genes, many of them in a single cluster around the ery operon, able to co-ordinately mediate the transport and degradation of erythritol into three carbon atoms intermediates that will be then converted into fructose-6P (F6P) by gluconeogenesis. Other induced genes participating in the nonoxidative branch of the pentose phosphate shunt and the TCA may collaborate with the ery genes to conform an efficient degradation of sugars by this route. On the other hand, several routes of amino acid and nucleotide biosynthesis are up-regulated whilst amino acid transport and catabolism genes are down-regulated. These results corroborate previous descriptions indicating that in the presence of erythritol, this sugar was used preferentially over other compounds and provides a neat explanation of the the reported stimulation of growth induced by erythritol

    Human plague: An old scourge that needs new answers

    Get PDF
    Yersinia pestis, the bacterial causative agent of plague, remains an important threat to human health. Plague is a rodent-borne disease that has historically shown an outstanding ability to colonize and persist across different species, habitats, and environments while provoking sporadic cases, outbreaks, and deadly global epidemics among humans. Between September and November 2017, an outbreak of urban pneumonic plague was declared in Madagascar, which refocused the attention of the scientific community on this ancient human scourge. Given recent trends and plague’s resilience to control in the wild, its high fatality rate in humans without early treatment, and its capacity to disrupt social and healthcare systems, human plague should be considered as a neglected threat. A workshop was held in Paris in July 2018 to review current knowledge about plague and to identify the scientific research priorities to eradicate plague as a human threat. It was concluded that an urgent commitment is needed to develop and fund a strong research agenda aiming to fill the current knowledge gaps structured around 4 main axes: (i) an improved understanding of the ecological interactions among the reservoir, vector, pathogen, and environment; (ii) human and societal responses; (iii) improved diagnostic tools and case management; and (iv) vaccine development. These axes should be cross-cutting, translational, and focused on delivering context-specific strategies. Results of this research should feed a global control and prevention strategy within a “One Health” approach

    The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides

    No full text
    The actions of polymyxin B, rabbit polymorphonuclear lysosome extracts, 14 polycationic peptides (including defensin NP-2, cecropin P1, lactoferricin B, and active peptides from cationic protein 18 and bactenecin), EDTA, and Tris on Brucella spp. were studied, with other gram-negative bacteria as controls. Brucella spp. were comparatively resistant to all of the agents listed above and bound less polymyxin B, and their outer membranes (OMs) were neither morphologically altered nor permeabilized to lysozyme by polymyxin B concentrations, although both effects were observed for controls. EDTA and peptides increased or accelerated the partition of the hydrophobic probe N-phenyl-naphthylamine into Escherichia coli and Haemophilus influenzae OMs but had no effect on Brucella OMs. Since Brucella and H. influenzae OMs are permeable to hydrophobic compounds (G. Martínez de Tejada and I. Moriyón, J. Bacteriol. 175:5273-5275, 1993), the results show that such unusual permeability is not necessarily related to resistance to polycations. Although rough (R) B. abortus and B. ovis were more resistant than the controls were, there were qualitative and quantitative differences with smooth (S) brucellae; this may explain known host range and virulence differences. Brucella S-lipopolysaccharides (LPSs) had reduced affinities for polycations, and insertion of Brucella and Salmonella montevideo S-LPSs into the OM of a Brucella R-LPS mutant increased and decreased, respectively, its resistance to cationic peptides. The results show that the core lipid A of Brucella LPS plays a major role in polycation resistance and that O-chain density also contributes significantly. It is proposed that the features described above contribute to Brucella resistance to the oxygen-independent systems of phagocytes

    Listeriolysin O-dependent host surfaceome remodeling modulates Listeria monocytogenes invasion

    No full text
    Listeria monocytogenes is a pathogenic bacterium that invades epithelial cells by activating host signaling cascades, which promote bacterial engulfment within a phagosome. The pore-forming toxin listeriolysin O (LLO), which is required for bacteria phagosomal escape, has also been associated with the activation of several signaling pathways when secreted by extracellular bacteria, including Ca2+ influx and promotion of L. monocytogenes entry. Quantitative host surfaceome analysis revealed significant quantitative remodeling of a defined set of cell surface glycoproteins upon LLO treatment, including a subset previously identified to play a role in the L. monocytogenes infection process. Our data further shows that the lysosomal-associated membrane proteins LAMP-1 and LAMP-2 are translocated to the cellular surface and those LLO-induced Ca2+ fluxes are required to trigger the surface relocalization of LAMP-1. Finally, we identify late endosomes/lysosomes as the major donor compartments of LAMP-1 upon LLO treatment and by perturbing their function, we suggest that these organelles participate in L. monocytogenes invasion

    Brucella-Salmonella lipopolysaccharide chimeras are less permeable to hydrophobic probes and more sensitive to cationic peptides and EDTA than are their native Brucella sp. counterparts

    No full text
    A rough (R) Brucella abortus 45/20 mutant was more sensitive to the bactericidal activity of polymyxin B and lactoferricin B than was its smooth (S) counterpart but considerably more resistant than Salmonella montevideo. The outer membrane (OM) and isolated lipopolysaccharide (LPS) of S. montevideo showed a higher affinity for these cationic peptides than did the corresponding B. abortus OM and LPS. We took advantage of the moderate sensitivity of R B. abortus to cationic peptides to construct live R B. abortus-S-LPS chimeras to test the activities of polymyxin B, lactoferricin B, and EDTA. Homogeneous and abundant peripheral distribution of the heterologous S-LPS was observed on the surface of the chimeras, and this coating had no effect on the viability or morphology of the cells. When the heterologous LPS corresponded to the less sensitive bacterium S B. abortus S19, the chimeras were more resistant to cationic peptides; in contrast, when the S-LPS was from the more sensitive bacterium S. montevideo, the chimeras were more susceptible to the action of peptides and EDTA. A direct correlation between the amount of heterologous S-LPS on the surface of chimeric Brucella cells and peptide sensitivity was observed. Whereas the damage produced by polymyxin B in S. montevideo and B. abortus-S. montevideo S-LPS chimeras was manifested mainly as OM blebbing and inner membrane rolling, lactoferricin B caused inner membrane detachment, vacuolization, and the formation of internal electron-dense granules in these cells. Native S and R B. abortus strains were permeable to the hydrophobic probe N-phenyl-1-naphthylamine (NPN). In contrast, only reduced amounts of NPN partitioned into the OMs of the S. montevideo and B. abortus-S. montevideo S-LPS chimeras. Following peptide exposure, accelerated NPN uptake similar to that observed for S. montevideo was detected for the B. abortus-S. montevideo LPS chimeras. The partition of NPN into native or EDTA-, polymyxin B-, or lactoferricin B-treated LPS micelles of S. montevideo or B. abortus mimicked the effects observed with intact cells, and this was confirmed by using micelle hybrids of B. abortus and S. montevideo LPSs. The results showed that LPS is the main cause of B. abortus' resistance to bactericidal cationic peptides, the OM-disturbing action of divalent cationic chelants, and OM permeability to hydrophobic substances. It is proposed that these three features are related to the ability of Brucella bacteria to multiply within phagocytes

    The outer membrane of Brucella ovis shows increased permeability to hydrophobic probes and is more susceptible to cationic peptides than are the outer membranes of mutant rough Brucella abortus strains

    No full text
    The permeability of the outer membrane (OM) to hydrophobic probes and its susceptibility to bactericidal cationic peptides were investigated for natural rough Brucella ovis and for mutant rough Brucella abortus strains. The OM of B. ovis displayed an abrupt and faster kinetic profile than rough B. abortus during the uptake of the hydrophobic probe N-phenyl-naphthylamine. B. ovis was more sensitive than rough B. abortus to the action of cationic peptides. Bactenecins 5 and 7 induced morphological alterations on the OMs of both rough Brucella strains. B. ovis lipopolysaccharide (LPS) captured considerably more polymyxin B than LPSs from both rough and smooth B. abortus strains. Polymyxin B, poly-L-lysine, and poly-L-ornithine produced a thick coating on the surfaces of both strains, which was more evident in B. ovis than in rough B. abortus. The distinct functional properties of the OMs of these two rough strains correlate with some structural differences of their OMs and with their different biological behaviors in animals and culture cells
    corecore