204 research outputs found
Trapping polarization of light in nonlinear optical fibers: An ideal Raman polarizer
The main subject of this contribution is the all-optical control over the
state of polarization (SOP) of light, understood as the control over the SOP of
a signal beam by the SOP of a pump beam. We will show how the possibility of
such control arises naturally from a vectorial study of pump-probe Raman
interactions in optical fibers. Most studies on the Raman effect in optical
fibers assume a scalar model, which is only valid for high-PMD fibers (here,
PMD stands for the polarization-mode dispersion). Modern technology enables
manufacturing of low-PMD fibers, the description of which requires a full
vectorial model. Within this model we gain full control over the SOP of the
signal beam. In particular we show how the signal SOP is pulled towards and
trapped by the pump SOP. The isotropic symmetry of the fiber is broken by the
presence of the polarized pump. This trapping effect is used in experiments for
the design of new nonlinear optical devices named Raman polarizers. Along with
the property of improved signal amplification, these devices transform an
arbitrary input SOP of the signal beam into one and the same SOP towards the
output end. This output SOP is fully controlled by the SOP of the pump beam. We
overview the sate-of-the-art of the subject and introduce the notion of an
"ideal Raman polarizer"
How Topological Rearrangements and Liquid Fraction Control Liquid Foam Stability
International audienceThe stability of foam is investigated experimentally through coalescence events. Instability (coalescence) occurs when the system is submitted to external perturbations (T1) and when the liquid amount in the film network is below a critical value. Microscopically, transient thick films are observed during film rearrangements. Film rupture, with coalescence and eventual collapse of the foam, occurs when the available local liquid amount is too small for transient films to be formed. Similar experiments and results are shown in the two-bubble case
Full vectorial analysis of polarization effects in optical nanowires
We develop a full theoretical analysis of the nonlinear interactions of the
two polarizations of a waveguide by means of a vectorial model of pulse
propagation which applies to high index subwavelength waveguides. In such
waveguides there is an anisotropy in the nonlinear behavior of the two
polarizations that originates entirely from the waveguide structure, and leads
to switching properties. We determine the stability properties of the steady
state solutions by means of a Lagrangian formulation. We find all static
solutions of the nonlinear system, including those that are periodic with
respect to the optical fiber length as well as nonperiodic soliton solutions,
and analyze these solutions by means of a Hamiltonian formulation. We discuss
in particular the switching solutions which lie near the unstable steady
states, since they lead to self-polarization flipping which can in principle be
employed to construct fast optical switches and optical logic gates
239 + 240Pu from “contaminant” to soil erosion tracer: Where do we stand?
As soil erosion is the major threat to one of the most essential resources of humankind, methods to quantify soil redistribution are crucial for agro-environmental assessment as well as for optimisation of soil conservation practices. The use of fallout radionuclides (FRN) as soil redistribution tracers is, next to modelling, currently the most promising approach for assessing soil erosion. This review aims to evaluate the suitability of Plutonium (Pu) in general and the 239+240Pu isotopes in particular as soil redistribution tracers. It provides information on its origin, distribution and behaviour in soils and in the environment. Analytical methods, their recent advances as well as limitations, are discussed. To establish the current state of knowledge and to deepen our understanding, particular attention is given to the main existing achievements and findings based on using 239+240Pu as soil erosion tracer in agroecosystems. We further discuss similarities and differences to other more mature FRN techniques such as the 137Cs based approach which has been until now the most widely used method. We conclude that 239+240Pu has the potential to become the next generation of soil redistribution tracer compared to the more mature FRN techniques mostly due to (i) its long half-life guaranteeing its long-term availability in the environment, (ii) its analytical advantage in terms of measurement precision and measurement time and (iii) its greater homogeneity at reference sites due to its main origin from past atmospheric nuclear weapon tests. In identifying some key future research opportunities and needs, we hope to refine the efficiency of this promising agro-environmental tracer for effective soil redistribution studies under future climate and land use change
Mechanical probing of liquid foam aging
We present experimental results on the Stokes experiment performed in a 3D
dry liquid foam. The system is used as a rheometric tool : from the force
exerted on a 1cm glass bead, plunged at controlled velocity in the foam in a
quasi static regime, local foam properties are probed around the sphere. With
this original and simple technique, we show the possibility of measuring the
foam shear modulus, the gravity drainage rate and the evolution of the bubble
size during coarsening
A universal optical all-fiber omnipolarizer
Wherever the polarization properties of a light beam are of concern, polarizers and polarizing beamsplitters (PBS) are indispensable devices in linear-, nonlinear-and quantum-optical schemes. By the very nature of their operation principle, transformation of incoming unpolarized or partially polarized beams through these devices introduces large intensity variations in the fully polarized outcoming beam(s). Such intensity fluctuations are often detrimental, particularly when light is post-processed by nonlinear crystals or other polarization-sensitive optic elements. Here we demonstrate the unexpected capability of light to self-organize its own state-of-polarization, upon propagation in optical fibers, into universal and environmentally robust states, namely right and left circular polarizations. We experimentally validate a novel polarizing device-the Omnipolarizer, which is understood as a nonlinear dual-mode polarizing optical element capable of operating in two modes-as a digital PBS and as an ideal polarizer. Switching between the two modes of operation requires changing beam's intensity
Band-gap solitons in nonlinear optically-induced lattices
We introduce novel optical solitons that consist of a periodic and a
spatially localized components coupled nonlinearly via cross-phase modulation.
The spatially localized optical field can be treated as a gap soliton supported
by the optically-induced nonlinear grating. We find different types of these
band-gap composite solitons and demonstrate their dynamical stability.Comment: 4 pages, 5 figure
Periodic waves in bimodal optical fibers
We consider coupled nonlinear Schrodinger equations (CNLSE) which govern the
propagation of nonlinear waves in bimodal optical fibers. The nonlinear
transform of a dual-frequency signal is used to generate an ultra-short-pulse
train. To predict the energy and width of pulses in the train, we derive three
new types of travelling periodic-wave solutions, using the Hirota bilinear
method. We also show that all the previously reported periodic wave solutions
of CNLSE can be derived in a systematic way, using the Hirota method.Comment: 10 pages with 2 figures. "Optics Communications, in press
Angle of repose and segregation in cohesive granular matter
We study the effect of fluids on the angle of repose and the segregation of
granular matter poured into a silo. The experiments are conducted in two
regimes where: (i) the volume fraction of the fluid is small and it forms
liquid bridges between particles, and (ii) the particles are completely
immersed in the fluid. The data is obtained by imaging the pile formed inside a
quasi-two dimensional silo through the transparent glass side walls. In the
first series of experiments, the angle of repose is observed to increase
sharply with the volume fraction of the fluid and then saturates at a value
that depends on the size of the particles. We systematically study the effect
of viscosity by using water-glycerol mixtures to vary it over at least three
orders of magnitude while keeping the surface tension almost constant. Besides
surface tension, the viscosity of the fluid is observed to have an effect on
the angle of repose and the extent of segregation. In case of bidisperse
particles, segregation is observed to decrease and finally saturate depending
on the size ratio of the particles and the viscosity of the fluid. The sharp
initial change and the subsequent saturation in the extent of segregation and
angle of repose occurs over similar volume fraction of the fluid. In the second
series of experiments, particles are poured into a container filled with a
fluid. Although the angle of repose is observed to be unchanged, segregation is
observed to decrease with an increase in the viscosity of the fluid.Comment: 9 pages, 12 figure
Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass
International audienceRecent research has been focused on the ability to manipulate a light beam in such a way to hide, namely to cloak, an event over a finite time or localization in space. The main idea is to create a hole or a gap in the spatial or time domain so as to allow for an object or data to be kept hidden for a while and then to be restored. By enlarging the field of applications of this concept to telecommunications, researchers have recently reported the possibility to hide transmitted data in an optical fibre. Here we report the first experimental demonstration of perpetual temporal spying and blinding process of optical data in fibre-optic transmission line based on polarization bypass. We successfully characterize the performance of our system by alternatively copying and then concealing 100% of a 10-Gbit s-1 transmitted signal.
- …