189 research outputs found

    Earlier green-up and spring warming amplification over Europe

    Get PDF
    The onset of green-up of plants has advanced in response to climate change. This advance has the potential to affect heat waves via biogeochemical and biophysical processes. Here a climate model was used to investigate only the biophysical feedbacks of earlier green-up on climate as the biogeochemical feedbacks have been well addressed. Earlier green-up by 5 to 30 days amplifies spring warming in Europe, especially heat waves, but makes few differences to heat waves in summer. This spring warming is most noticeable within 30 days of advanced green-up and is associated with a decrease in low- and middle-layer clouds and associated increases of downward short wave and net radiation. We find negligible differences in the Southern Hemisphere and low latitudes of the Northern Hemisphere. Our results provide an estimate of the level of skill necessary in phenology models to avoid introducing biases in climate simulations

    Influence of antecedent soil moisture conditions on the synoptic meteorology of the Black Saturday bushfire event in southeast Australia

    Get PDF
    The dynamics and large-scale drivers of heat wave (HW) events in Australia are well documented. However, the influence of soil moisture in modulating HWs is largely unexplored. We focus here on a recent significant HW event in southeast Australia that preceded the Black Saturday bushfires (3-7 February 2009). During this period, the southeast of Australia experienced unprecedented warm conditions, which, in conjunction with high fuel load and mesoscale weather conditions, led to devastating bushfires. We examine how different initial soil moisture conditions with lead times of 5, 10, and 15 days prior to the event would have altered its overall dynamics at the continental scale. We show that at short lead times (5 days), the influence of perturbing soil moisture is mostly linear. Decreasing (increasing) soil moisture increases (decreases) maximum temperatures, associated with an intensification of the upper-level anticyclone. The effect of increasing soil moisture is more nonlinear than decreasing soil moisture with increasing lead time; namely, increasing soil moisture can also lead to an increase in maximum temperature over some parts of the domain, rather than a decrease everywhere. At lead times of up to 15 days, the imposed perturbation in soil moisture, mostly confined to the Tropics, is essentially lost such that the impact on maximum temperatures on the day of the event cannot be related to the sign of the imposed perturbation in soil moisture. Our results highlight the importance of accurate soil moisture estimates in capturing the intensity and spatial extent of HW events in southeast Australia, but only at relatively short lead times

    Impact of land surface initialization approach on subseasonal forecast skill: A regional analysis in the southern hemisphere

    Get PDF
    The authors use a sophisticated coupled land–atmosphere modeling system for a Southern Hemisphere subdomain centered over southeastern Australia to evaluate differences in simulation skill from two different land surface initialization approaches. The first approach uses equilibrated land surface states obtained from offline simulations of the land surface model, and the second uses land surface states obtained from reanalyses. The authors find that land surface initialization using prior offline simulations contribute to relative gains in subseasonal forecast skill. In particular, relative gains in forecast skill for temperature of 10%–20% within the first 30 days of the forecast can be attributed to the land surface initialization method using offline states. For precipitation there is no distinct preference for the land surface initialization method, with limited gains in forecast skill irrespective of the lead time. The authors evaluated the asymmetry between maximum and minimum temperatures and found that maximum temperatures had the largest gains in relative forecast skill, exceeding 20% in some regions. These results were statistically significant at the 98% confidence level at up to 60 days into the forecast period. For minimum temperature, using reanalyses to initialize the land surface contributed to relative gains in forecast skill, reaching 40% in parts of the domain that were statistically significant at the 98% confidence level. The contrasting impact of the land surface initialization method between maximum and minimum temperature was associated with different soil moisture coupling mechanisms. Therefore, land surface initialization from prior offline simulations does improve predictability for temperature, particularly maximum temperature, but with less obvious improvements for precipitation and minimum temperature over southeastern Australia

    Representation of climate extreme indices in the ACCESS1.3b coupled atmosphere–land surface model

    Get PDF
    Climate extremes, such as heat waves and heavy precipitation events, have large impacts on ecosystems and societies. Climate models provide useful tools for studying underlying processes and amplifying effects associated with extremes. The Australian Community Climate and Earth System Simulator (ACCESS) has recently been coupled to the Community Atmosphere Biosphere Land Exchange (CABLE) model. We examine how this model represents climate extremes derived by the Expert Team on Climate Change Detection and Indices (ETCCDI) and compare them to observational data sets using the AMIP framework. We find that the patterns of extreme indices are generally well represented. Indices based on percentiles are particularly well represented and capture the trends over the last 60 years shown by the observations remarkably well. The diurnal temperature range is underestimated, minimum temperatures (TMIN) during nights are generally too warm and daily maximum temperatures (TMAX) too low in the model. The number of consecutive wet days is overestimated, while consecutive dry days are underestimated. The maximum consecutive 1-day precipitation amount is underestimated on the global scale. Biases in TMIN correlate well with biases in incoming longwave radiation, suggesting a relationship with biases in cloud cover. Biases in TMAX depend on biases in net shortwave radiation as well as evapotranspiration. The regions and season where the bias in evapotranspiration plays a role for the TMAX bias correspond to regions and seasons where soil moisture availability is limited. Our analysis provides the foundation for future experiments that will examine how land-surface processes contribute to these systematic biases in the ACCESS modelling system

    Implementation of a soil albedo scheme in the CABLEv1.4b land surface model and evaluation against MODIS estimates over Australia

    Get PDF
    Land surface albedo, the fraction of incoming solar radiation reflected by the land surface, is a key component of the Earth system. This study evaluates snow-free surface albedo simulations by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model with the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Satellite Pour L'Observation de la Terre (SPOT) albedo. We compare results from offline simulations over the Australian continent. The control simulation has prescribed background snow-free and vegetation-free soil albedo derived from MODIS whilst the experiments use a simple parameterisation based on soil moisture and colour, originally from the Biosphere Atmosphere Transfer Scheme (BATS), and adopted in the Common Land Model (CLM). The control simulation, with prescribed soil albedo, shows that CABLE simulates overall albedo over Australia reasonably well, with differences compared to MODIS and SPOT albedos within ±0.1. Application of the original BATS scheme, which uses an eight-class soil classification, resulted in large differences of up to −0.25 for the near-infrared (NIR) albedo over large parts of the desert regions of central Australia. The use of a recalibrated 20-class soil colour classification from the CLM, which includes a higher range for saturated and VIS (visible) and NIR soil albedos, reduced the underestimation of the NIR albedo. However, this soil colour mapping is tuned to CLM soil moisture, a quantity which is not necessarily transferrable between land surface models. We therefore recalibrated the soil color map using CABLE's climatological soil moisture, which further reduced the underestimation of the NIR albedo to within ±0.15 over most of the continent as compared to MODIS and SPOT albedos. Small areas of larger differences of up to −0.25 remained within the central arid parts of the continent during summer; however, the spatial extent of these large differences is substantially reduced as compared to the simulation using the default eight-class uncalibrated soil colour map. It is now possible to use CABLE coupled to atmospheric models to investigate soil-moisture–albedo feedbacks, an important enhancement of the model

    Influence of leaf area index prescriptions on simulations of heat, moisture, and carbon fluxes

    Get PDF
    Leaf area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component of land surface models. The authors investigate the influence of differing, plausible LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange version 1.4b (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI dataset is generated using the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product and gridded observations of temperature and precipitation. Offline simulations lasting 29 years (1980–2008) are carried out at 25-km resolution with the composite monthly means from the MODIS LAI product (control simulation) and compared with simulations using each of the 15-member ensemble monthly varying LAI datasets generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes, but the carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary production with differences ranging from −90% to 60%. Plant function types (PFTs) with high absolute LAI and low interannual variability, such as evergreen broadleaf trees, showed the least response to the different LAI prescriptions, while those with lower absolute LAI and higher interannual variability, such as croplands, were more sensitive. The authors show that reliance on a single LAI prescription may not accurately reflect the uncertainty in the simulation of terrestrial carbon fluxes, especially for PFTs with high interannual variability. The study highlights that accurate representation of LAI in land surface models is key to the simulation of the terrestrial carbon cycle. Hence, this will become critical in quantifying the uncertainty in future changes in primary production

    Random subcubes as a toy model for constraint satisfaction problems

    Full text link
    We present an exactly solvable random-subcube model inspired by the structure of hard constraint satisfaction and optimization problems. Our model reproduces the structure of the solution space of the random k-satisfiability and k-coloring problems, and undergoes the same phase transitions as these problems. The comparison becomes quantitative in the large-k limit. Distance properties, as well the x-satisfiability threshold, are studied. The model is also generalized to define a continuous energy landscape useful for studying several aspects of glassy dynamics.Comment: 21 pages, 4 figure

    Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study

    Get PDF
    Seven climate models were used to explore the biogeophysical impacts of human-induced land cover change (LCC) at regional and global scales. The imposed LCC led to statistically significant decreases in the northern hemisphere summer latent heat flux in three models, and increases in three models. Five models simulated statistically significant cooling in summer in near-surface temperature over regions of LCC and one simulated warming. There were few significant changes in precipitation. Our results show no common remote impacts of LCC. The lack of consistency among the seven models was due to: 1) the implementation of LCC despite agreed maps of agricultural land, 2) the representation of crop phenology, 3) the parameterisation of albedo, and 4) the representation of evapotranspiration for different land cover types. This study highlights a dilemma: LCC is regionally significant, but it is not feasible to impose a common LCC across multiple models for the next IPCC assessment

    Structure of shocks in Burgers turbulence with L\'evy noise initial data

    Full text link
    We study the structure of the shocks for the inviscid Burgers equation in dimension 1 when the initial velocity is given by L\'evy noise, or equivalently when the initial potential is a two-sided L\'evy process ψ0\psi_0. When ψ0\psi_0 is abrupt in the sense of Vigon or has bounded variation with lim suph0h2ψ0(h)=\limsup_{|h| \downarrow 0} h^{-2} \psi_0(h) = \infty, we prove that the set of points with zero velocity is regenerative, and that in the latter case this set is equal to the set of Lagrangian regular points, which is non-empty. When ψ0\psi_0 is abrupt we show that the shock structure is discrete. When ψ0\psi_0 is eroded we show that there are no rarefaction intervals.Comment: 22 page

    AI-ready data in space science and solar physics: problems, mitigation and action plan

    Get PDF
    In the domain of space science, numerous ground-based and space-borne data of various phenomena have been accumulating rapidly, making analysis and scientific interpretation challenging. However, recent trends in the application of artificial intelligence (AI) have been shown to be promising in the extraction of information or knowledge discovery from these extensive data sets. Coincidentally, preparing these data for use as inputs to the AI algorithms, referred to as AI-readiness, is one of the outstanding challenges in leveraging AI in space science. Preparation of AI-ready data includes, among other aspects: 1) collection (accessing and downloading) of appropriate data representing the various physical parameters associated with the phenomena under study from different repositories; 2) addressing data formats such as conversion from one format to another, data gaps, quality flags and labeling; 3) standardizing metadata and keywords in accordance with NASA archive requirements or other defined standards; 4) processing of raw data such as data normalization, detrending, and data modeling; and 5) documentation of technical aspects such as processing steps, operational assumptions, uncertainties, and instrument profiles. Making all existing data AI-ready within a decade is impractical and data from future missions and investigations exacerbates this. This reveals the urgency to set the standards and start implementing them now. This article presents our perspective on the AI-readiness of space science data and mitigation strategies including definition of AI-readiness for AI applications; prioritization of data sets, storage, and accessibility; and identifying the responsible entity (agencies, private sector, or funded individuals) to undertake the task
    corecore