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ABSTRACT

Leaf area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component

of land surfacemodels. The authors investigate the influence of differing, plausible LAI prescriptions on heat,

moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange version

1.4b (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI dataset is

generated using the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product and gridded

observations of temperature and precipitation. Offline simulations lasting 29 years (1980–2008) are carried

out at 25-km resolution with the composite monthly means from the MODIS LAI product (control simula-

tion) and compared with simulations using each of the 15-member ensemble monthly varying LAI datasets

generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes, but the

carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary pro-

duction with differences ranging from290% to 60%. Plant function types (PFTs) with high absolute LAI and

low interannual variability, such as evergreen broadleaf trees, showed the least response to the different LAI

prescriptions, while those with lower absolute LAI and higher interannual variability, such as croplands, were

more sensitive. The authors show that reliance on a single LAI prescription may not accurately reflect the

uncertainty in the simulation of terrestrial carbon fluxes, especially for PFTs with high interannual variability.

The study highlights that accurate representation of LAI in land surface models is key to the simulation of the

terrestrial carbon cycle. Hence, this will become critical in quantifying the uncertainty in future changes in

primary production.

1. Introduction

Land surfacemodels (LSMs) describe the exchange of

heat, moisture, and carbon between the land surface and

atmosphere. There are a wide variety of LSMs used in

both regional and global climate models, and they can

vary considerably in complexity (Pitman 2003). One key

aspect that differentiates LSMs is whether they include

phenology and, if dynamic, whether it is prescribed or

simulated. In most LSMs, phenology is represented by

the leaf area index (LAI), the total one-sided surface

area of leaf per ground surface area.

LAI is critical in any LSM since it affects the albedo of

the terrestrial surface and hence the amount of net ra-

diation available to drive sensible and latent heat. LAI

also affects the partitioning of net radiation between sen-

sible and latent heat fluxes (Verstraete and Dickinson

1986) because it controls the surface area of vegetation

in direct contact with the atmosphere and affects the

efficiency by which water can be transferred from within

the vegetation to the atmosphere. Similarly, LAI affects

the terrestrial carbon balance since it affects the pho-

tosynthesis and net primary productivity of a canopy.

Finally, LAI influences rainfall interception and thereby

affects the partitioning of rainfall between evaporation,

throughfall, and runoff.
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The implementation of LAI in LSMs within regional

and global climate models varies widely. At one end of

the spectrum, some LSMs are coupled to dynamic veg-

etation models (e.g., Bonan et al. 2003), whereby LAI is

a prognostic variable and responds to surface climate

variations. However, climate biases from the regional

and global atmospheric models make the realistic sim-

ulation of LAI difficult (Liu et al. 2008). As a conse-

quence, most LSMs do not include dynamic vegetation

and instead prescribe LAI.

LAI can be prescribed according to plant functional

types (PFTs) from lookup tables. These values are

usually based on field observations and either held

constant in time or allowed to vary seasonally. This

method does not allow for interannual variability or

variations within PFTs; the same PFTs at different lati-

tudes use the sameLAI. Since this is not realistic, several

studies have investigated the use of satellite-derived

LAI and shown improvements in the simulation of sur-

face climatology (e.g., Pielke et al. 1997; Buermann et al.

2001). The main impediment to the use of satellite-

derived LAI is the limited temporal availability of these

data. There is also an inherent assumption of statio-

narity for future climate simulations: the assumption

that the present spatial and seasonal variations in LAI

are representative of the future, even though they are

clearly climate dependent.

Since LAI interacts with radiation, water balance, and

carbon balance it is a key parameter connecting the core

components of climate and ecological modeling (Parton

et al. 1996). One of the key characteristics of LAI is how

it varies spatially (Bonan et al. 1993) and temporally.

While LAI affects the interactions between the atmo-

sphere at a point or grid scale (Bonan et al. 1993), this

scales up to continental scales (Pitman et al. 1999) in

uncoupled simulations. There is additional evidence

that LAI affects the atmosphere at larger scales (Chase

et al. 1996). Most recently, van den Hurk et al. (2003)

demonstrated that using remotely sensed LAI in a

weather forecasting system affected the surface evapo-

ration when evaporation formed a large term in the

surface energy balance. They concluded that improved

estimates of LAI could be an important method for

improving model estimates of evaporation.

The relationship between LAI and the terrestrial

carbon balance is well documented from observational

studies. Barr et al. (2004) investigated the influence of

LAI on net ecosystem production in a deciduous forest

in Canada and found a tight coupling between the an-

nual maximum LAI and production. Saigusa et al.

(2008) used data from flux towers and found that tem-

perate deciduous forests showed the greatest positive

net ecosystem production after leaf expansion (higher

LAI) in early summer. Duursma et al. (2009) used

measurements from coniferous stands in Europe and

found that LAI was a significant influence on gross pri-

mary production (GPP). Finally, Keith et al. (2012) used

measurements at a single flux-tower site inAustralia and

focused on the carbon budget during drought years.

They found that reductions in LAI due to insect attacks,

in addition to drought stresses, contributed to a 26%

reduction in GPP and 9% reduction in ecosystem res-

piration as compared to years with drought stresses

alone.

Some modeling studies have investigated the in-

fluence of vegetation parameters on the simulation of

terrestrial carbon fluxes and season length (e.g., White

and Nemani 2003; Piao et al. 2007), but few explicitly

focus on the influence of LAI versus meteorological

forcing. This was recently investigated by Puma et al.

(2013) in an offline LSM at four North American sites.

They found that variations in LAI had a dominant

control on GPP, a smaller but comparable effect on

transpiration, a weak influence on total evapotranspi-

ration, and a negligible impact on runoff. Additionally,

they found that the effect of LAI on GPP is greater in

energy-limited regimes as compared tomoisture-limited

regimes, except when vegetation exhibits little inter-

annual variations in LAI. Hence, they conclude that an

accurate representation of LAI interannual variability

in LSMs is critical to accurately simulate GPP.

Overall, it is clear that the way a land surface model

treats LAI is central to accurately simulating the heat,

moisture, and carbon fluxes at the land surface. This

paper focuses on the Community Atmosphere Bio-

sphere Land Exchange Model (CABLE; Wang et al.

2011). CABLE does not include a dynamic vegetation

model by default; hence, the spatial and temporal vari-

ation of LAI are prescribed (prognostic LAI is im-

plemented in later versions but not currently widely

used). While several studies have used CABLE to an-

swer wide-ranging research questions (e.g., Abramowitz

and Gupta 2008; Cruz et al. 2010; Q. Zhang et al. 2011;

Pitman et al. 2011; Wang et al. 2012; Exbrayat et al.

2013), only few studies have examined the influence of

LAI on heat, moisture, and carbon fluxes in CABLE.

Zhang et al. (2013) ran global offline simulations with

CABLE and conducted a sensitivity analysis by varying

several vegetation and soil parameters, including LAI,

by 650%, 30%, and 20% of the default values. Com-

parison of their simulations with other models (Rodell

et al. 2004; Dirmeyer et al. 2006; Jung et al. 2009) showed

that the influence of LAI was most noticeable in the

middle and high latitudes of the Northern Hemisphere

where broadleaf forests are the dominant plant func-

tional type. However, Zhang et al. (2013) also point out
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that their imposed LAI perturbation does not neces-

sarily reflect realistic uncertainties in estimates of LAI,

so they, additionally, only focused on evapotranspira-

tion and runoff.

Lu et al. (2013) conducted an extensive parameter

sensitivity analysis of CABLE over a single year at the

global scale. They found that at global scale, the most

important parameter affecting GPP is the maximum

carboxylation rate, followed by LAI. When analyzing

each PFT separately, they also found LAI to be the

second-most important parameter influencing GPP,

except for evergreen broadleaf forests, whereby the

initial slope of the response curve of potential electron

was the second-most important factor, followed by LAI.

They carried out a similar analysis for latent heat and

found LAI to be the third-most important factor glob-

ally, but results varied for each PFT. Namely, LAI was

the most important for deciduous needleleaf trees;

second-most important for evergreen needleleaf trees;

third-most important for evergreen broadleaf trees, de-

ciduous broadleaf trees, and deciduous needleleaf trees;

fourth-most important for crops; and fifth-most impor-

tant for shrublands.

While the work of Zhang et al. (2013) and Lu et al.

(2013) provide valuable insight into the sensitivity of

CABLE to LAI and its importance relative to other

model parameters, the influence of realistic interannual

variations in LAI on the surface energy and carbon

balance remains unknown. This study provides a method

of generating LAI ensembles, based on the MODIS LAI

and the observed climatology, to address this knowledge

gap. The next section describes the model setup and the

generation of the LAI ensemble. This is followed by an

analysis of the influence of differentmonthly varying LAI

prescriptions on CABLE-simulated surface energy and

carbon fluxes.

2. Methods

a. Model description

CABLE is a land surface model designed to simulate

fluxes of energy, water, and carbon at the land surface

and can be run as an offline model with prescribed me-

teorology (e.g., Wang et al. 2011) or fully coupled to an

atmospheric model within a global or regional climate

model (e.g.,Mao et al. 2011). CABLE is a key part of the

Australian Community Climate Earth System Simulator

(ACCESS; see http://www.accessimulator.org.au), a fully

coupled earth system sciencemodel, currently being used

as part of the Fifth Assessment Report (AR5) of the

Intergovernmental Panel on Climate Change (IPCC).

The version used in this study is CABLEv1.4b.

In CABLEv1.4b, the one-layered, two-leaf canopy

radiation module of Wang and Leuning (1998) is used

for sunlit and shaded leaves and the canopy microme-

teorology module of Raupach (1994) is used for com-

puting surface roughness length, zero-plane displacement

height, and aerodynamic resistance. The model also con-

sists of a surface flux module to compute the sensible and

latent heat flux from the canopy and soil, the ground heat

flux, as well as net photosynthesis. A soil module is used

for the transfer of heat and water within the soil and

snow, and an ecosystem carbon module based on

Dickinson et al. (1998) is used for the terrestrial carbon

cycle. A detailed description of each of the modules can

be found in Kowalczyk et al. (2006) and Wang et al.

(2011).

LAI in CABLE is used to compute the roughness

length of vegetation and the standard deviation of ver-

tical velocities, which are used for the formulation of

aerodynamic resistances and hence influence surface

energy balance calculations. It is also used to compute

the total flux density of radiation for sunlit and shaded

leaves within the plant canopy radiation transfer model.

This influences simulations of photosynthesis, stomatal

conductance, leaf temperature, and energy and carbon

fluxes as CABLE performs separate calculations for

sunlit versus shaded leaves (Kowalczyk et al. 2006). Fi-

nally, LAI is used in the ecosystem carbon module,

where it directly influences GPP and autotrophic respi-

ration (AR).Heterotrophic respiration (HR) is not directly

driven by LAI, but by soil moisture and temperature.

b. Model setup

CABLEv1.4b was used within the National Aero-

nautics and Space Administration Land Information

System version 6.1 (LIS-6.1; Kumar et al. 2006, 2008),

a flexible software platform designed as a land surface

modeling and hydrological data assimilation system. A

grid resolution of 0.258 3 0.258 was utilized, covering

continental Australia. The model was forced with the

Modern-Era Retrospective Analysis for Research and

Applications (MERRA) reanalysis (Rienecker et al.

2011) at 3-hourly intervals and integrated from 1980 to

2008 and initialized from a previous 30-yr spinup. The

forcing variables included incoming longwave and

shortwave radiation, air temperature, specific humidity,

surface pressure, wind speed, and precipitation. The

MERRA reanalysis was bias corrected for precipitation

using the Australian Bureau of Meteorology Australian

Water Availability Project (BAWAP) gridded pre-

cipitation dataset (Jones et al. 2009), following Decker

et al. (2013). Monthly ambient carbon dioxide concen-

trations were prescribed using measurements from

Baring Head, New Zealand (Keeling et al. 2005).
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In CABLEv1.4b, the background snow-free and

vegetation-free soil albedo has to be prescribed. We used

the MODIS-derived, snow-free background soil albedo

data from Houldcroft et al. (2009). Bare soil regions,

as defined by the International Geosphere–Biosphere

Programme (IGBP) land-use classification map (used in

CABLE), are assigned the mean albedo over the data

period (October 2002 to December 2006), while par-

tially vegetated pixels are assigned a soil albedo derived

from a linear relationship between albedo and the nor-

malized difference vegetation index (NDVI). A linear

regression model is then used to estimate the back-

ground soil albedo corresponding to zero green LAI

(Houldcroft et al. 2009). The IGBP land-use classifica-

tion was used, and radiative properties, including the

leaf transmittance and reflectance values in the visible,

near-infrared, and thermal regions, were prescribed for

each vegetation type following Avila et al. (2012). These

values were obtained by adjusting estimates from Dorman

and Sellers (1989) until the simulated albedo fromCABLE

closely approximated the MODIS-observed broadband

albedo.

c. Simulations

When running CABLE at a single site, LAI can be

prescribed fromobservations at the site (e.g., Abramowitz

and Gupta 2008; Wang et al. 2011; Li et al. 2012). When

running CABLE over a grid domain, LAI values are by

default taken from a literature-based estimate for each

PFT and are fixed in time (e.g., H. Zhang et al. 2011) or

vary seasonally (Avila et al. 2012). For IPCCAR5 global

climate simulations, the MODIS LAI product is used in

CABLE within the ACCESS global circulation model.

Since the aim of this paper is to provide better in-

formation on the sensitivity of CABLE to LAI, we use

the sameMODISLAI product (Yuan et al. 2011) for our

control simulation (1980–2008). This is carried out by

prescribing monthly mean climatological LAI at each

grid cell, based on monthly averages over the period of

availability of the MODIS LAI data (2000–08).

To investigate the influence of LAI, a 15-member

monthly varying (1980–2008) LAI ensemble was gen-

erated using the MODIS LAI and gridded observations

of maximum (Tmax) and minimum (Tmin) temperatures

and precipitation from the BAWAP (Jones et al. 2009).

The goal of reconstructing the LAI was to explore the

model response to reasonable estimates of LAI vari-

ability; therefore, an ensemble approach based on sim-

ple linear regression between the MODIS LAI and the

BAWAP data was used.

The 8-dayMODIS LAI was spatially aggregated from

its original 0.058 3 0.058 grid to the BWAP 0.258 3 0.258
grid by weighting each 0.05 cell by the area, summing the

twenty-five 0.058 grid cells within each 0.258 cell and fi-

nally normalizing by the total area within the course grid

cell. This simple method avoids introducing unnecessary

complexities that arise when the LAI is interpolated

using subgrid-scale PFT distributions. The 8-day, 0.258
fields where finally averaged to the monthly means by

weighting each 8-day period according to the number of

days from that time span that fell within a given month.

The 15 ensemble members were generated by linearly

regressing the anomalous (found by removing the mean

annual cycle) monthly MODIS LAI against Tmax, Tmin,

and precipitation from BAWAP at each 0.258 grid cell.

The regressions were performed using data from the

period 2000–08, as this period is coincident with avail-

ability of the MODIS LAI. The regressions were first

performed separately for each variable and subsequently

using all three variables to isolate the influence of each of

Tmax, Tmin, and precipitation. Owing to the lag between

precipitation and vegetation greenness metrics in south-

eastern Australia (Decker et al. 2013), we use a centered

five-point linear regression, although similar results are

obtained when only three points are included. The dif-

ferent sets of spatially distributed regression coefficients

were calculated by randomly removing 25% of the data

from each of the 15 regressions.

Data were withheld as the data training period (2000–

08) occurs during a long-term, large-scale drought in

Australia. Limiting the temporal data in each of the

regressions allows for uncertainty due to the training

period selection and creates a larger spread among the

final ensemble members. The 15 ensemble estimates of

anomalous LAI were created by applying each of these

15 different, spatially explicit regression coefficients for

the period 1980–2008. A random Gaussian noise com-

ponent with the mean and standard deviation given by

themean and standard deviation of the regression errors

from each fitting was added during the construction of

the LAI estimates. The added noise ensures that the

errors associated with the fitting propagate to the final

estimates, increase the spread between each of the en-

semble members, and are consistent with the assump-

tion that errors in LAI follow a Gaussian distribution

(McColl et al. 2011). Finally, these estimates of the LAI

anomalies (constructed using all three data sources)

were added to the mean annual cycle of the MODIS

LAI to create the final LAI ensemble members. The

spatially averaged ensemble spread of the anomalous

LAI, relative to (i.e., divided by) the spatially averaged

ensemble mean anomaly, was 19.1% for the median,

22.9% for the mean, 0.1% for theminimum, and 133.6%

for the maximum. While this range of LAI is smaller

compared to the range of LAI imposed by other

studies, it suits the purpose of testing the influence of
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a climatologically driven LAI ensemble, which is the

aim of this study.

Figure 1 shows the relationship between the MODIS

LAI and the mean of the 15-member ensemble LAI

reconstructions using only precipitation (Fig. 1a), Tmax

(Fig. 1b), Tmin (Fig. 1c), and the combination of all three

(Fig. 1d). The rms errors (RMSEs) of the single-variable

regressions are 0.190, 0.194, and 0.200, respectively,

while using all three variables results in a slightly better

fitting (with RMSE 0.188). Figure 1 demonstrates that,

while precipitation, Tmax, and Tmin can be used to re-

construct the LAI, the slope of the fittings are less than

one (0.982, 0.981, and 0.980, respectively). The combi-

nation of the three (Fig. 1d) yields a slope of 0.987, which

is statistically larger than the slopes of the regressions

using a single variable, but still less than one. Due to the

slightly better agreement with the MODIS observations

for the period 2000–08, the LAI reconstructed using all

three variables was used for the model simulations.

Overall, the mean of the ensemble members recon-

structs the LAI variability for the period 2000–08 with

R2 values typically 0.3–0.6, with some individual en-

semble members better matching the observed LAI

variability over this period.

Fifteen simulations were performed over this period

using these monthly varying LAI reconstructions. We

note here that several studies on the influence of LAI on

surface climatology use time-varying versus fixed LAI

(e.g., van den Hurk et al. 2003) or apply a fixed factor

[e.g., double or half LAI (Parton et al. 1996)]. Since it is

FIG. 1. Scatterplot of the ensemble mean of the constructed LAI (m2m22) vs theMODIS LAI (m2m22) for each

grid cell for the period 2000–08 obtained using (a) precipitation; (b) Tmin; (c) Tmax; and (d) precipitation, Tmax, and

Tmin together.
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well established that the seasonal variation of LAI is not

negligible (e.g., over croplands) and the use of remotely

sensed LAI in LSMs generally improves surface clima-

tology (Pielke et al. 1997; Buermann et al. 2001), we

focus here on one of the most widely adopted remotely

sensed LAI products, MODIS, and examine the sensi-

tivity of CABLE to a MODIS-derived monthly varying

ensemble LAI product, which is representative of the

climatology. In summary, both the control and experi-

ments are run over the same time period, except that the

control simulation has no interannual variation in LAI

while the ensemble members are designed to reflect

the climatology.

d. Data analysis

The heat, moisture, and carbon fluxes were analyzed

separately for each dominant PFT, defined as PFTs with

coverage greater than 1% of land points, as shown in

Fig. 2. This was to avoid compensating effects between

PFTs, as these have distinct seasonal signals as well as

absolute magnitudes. For example, croplands, being

a human-managed PFT, have higher seasonal variability

than native vegetation. Additionally, the dense forested

areas (evergreen broadleaf trees), have the highest ab-

solute LAI, while most of inland Australia is sparsely

vegetated with open shrublands having lower absolute

LAI. Since the imposed changes in LAI are on themonthly

time scale, we compute monthly means and standard

deviations of the fluxes and plot time series of the dif-

ference between the control and ensemble mean, with

the standard deviation used to provide a measure of

spread. Since the variations in the imposed LAI vary

with time (monthly) and reflect the interannual vari-

ability in climatology inherent in the BAWAP gridded

precipitation and temperature dataset, we perform a

time series rather than seasonal analysis (e.g., mean

summer fluxes over the whole period). Additionally, we

compute zero-lag cross-correlations between LAI and

the fluxes to better quantify the response to changes

in LAI.

3. Results

Figure 3 shows a monthly time series of the absolute

(control minus ensemble mean, Fig. 3a) and the per-

centage difference [(absolute difference/control)3 100,

Fig. 3b] in LAI, heat, moisture, and carbon fluxes for

open shrublands between 1980 and 2008. The zero-lag

cross correlations with LAI are summarized in Table 1.

The difference in LAI for open shrublands varies ap-

proximately between 20.2 and 0.1, which represents

a percentage change of 290% to 30%. As expected,

increases in LAI lead to an increase in vegetation tran-

spiration (EV) and a decrease in soil evaporation (ES),

as shown by the strong positive cross-correlation be-

tween LAI and EV and negative correlation with ES

(Table 1). Although the absolute changes in EV are

smaller than ES, when expressed as a percentage

change, they are larger by a factor of ;2–3. This is ex-

pected as the amount of leaf respiration is a direct

function of LAI, whereas LAI only acts to partially in-

hibit soil evaporation.

The effects of LAI on the absolute changes in mean

monthly sensible (Qh) and latent (Qle) heat fluxes are

small (,1Wm22), with percentage changes between

24% and 6% only, and the correlations with LAI are

lower as compared to EV and ES. These small changes

in Qh and Qle corresponded with equally small changes

in net radiation and surface albedo (not shown). Overall

surface albedo in CABLE is a function of the vegetation

albedo, background snow-free soil albedo, and snow

albedo. The area covered by open shrublands is not

densely vegetated, so it is the background soil albedo

that largely determines the overall surface albedo. The

relatively small perturbation in LAI imposed did not

alter the overall surface albedo to a large extent; thus,

the partitioning between Qh and Qle was not generally

affected.

The changes in the terrestrial carbon fluxes, on the

other hand, showed a much stronger response to LAI. A

decrease in LAI led to a decrease in autotrophic respi-

ration (AR) and increase in heterotrophic respiration

(HR), with strong positive cross-correlation between

FIG. 2. Dominant plant functional types (PFTs), defined as

greater than 1% of land points (masked inland regions in white are

PFTs less than 1% of land points).
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LAI and AR and weaker negative correlation with HR

(Table 1). When expressed as a percentage change, the

differences in AR were up to 3–4 times larger than HR.

This was expected since HR is driven by below-canopy

and soil processes, while AR is a direct function of LAI.

Similarly, GPP was strongly positively correlated with

LAI [we note that by convention in CABLE, downward

fluxes (i.e., GPP) are negative, but shown as positive

here to remain consistent with the literature] as it is also

a direct function of LAI, with percentage differences

between 240% and 20% (the same order of magnitude

as the percentage change in LAI).

For croplands (Fig. 4), the absolute change in LAI

varies between 20.6 and 0.6, corresponding to a per-

centage change of approximately2160% to 40%. This is

larger when compared to open shrublands and all the

other PFTs. Croplands, being a human-managed PFT,

have the highest seasonal and interannual variation in

LAI (;0.3–1.8) as compared to open shrublands (;0.3–

0.5) and the other PFTs and, thus, have the strongest

response to monthly changes in precipitation, Tmax, and

Tmin, which were used to generate the ensemble. The

absolute changes in the heat and evaporative fluxes are

an order of magnitude higher as compared to open

shrublands (Fig. 3), and the corresponding percentage

FIG. 3. Time series of (a) monthly mean absolute differences and (b) percentage differences in LAI, vegetation transpiration (EV), soil

evaporation (ES), Qh, Qle, autotrophic respiration (AR), heterotrophic respiration (HR), and GPP between the control simulation and

the ensemble mean for open shrublands (72.6% of land points). The shaded region represents one standard deviation.

TABLE 1. Zero-lag cross-correlations between differences in

LAI and differences in vegetation transpiration (EV), soil evapo-

ration (ES), sensible heat (Qh), latent heat (Qle), autotrophic res-

piration (AR), heterotrophic respiration (HR), and gross primary

production (GPP) for the major plant functional types shown in

Fig. 2.

PFT EV ES Qh Qle AR HR GPP

Open shrublands 0.94 20.90 20.63 0.39 0.91 20.76 0.99

Croplands 0.88 20.90 0.20 20.29 0.87 20.56 0.95

Woody savannas 0.97 20.88 0.31 20.64 0.95 20.40 0.99

Evergreen

broadleaf trees

0.80 20.88 0.63 20.76 0.79 0.46 0.87

Savannas 0.93 20.88 0.46 20.65 0.91 20.48 0.97

Grasslands 0.90 20.80 20.29 0.01 0.85 20.66 0.98
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changes are about double.Although the absolute changes

inQh andQle are larger as compared to open shrublands,

this change on a monthly time scale is relatively small

(the large percentage changes in Qh of up to 600% still

represent a small absolute change). The small absolute

LAI of croplands is such that even large percentage

changes did not change the surface albedo to a large

enough extent to significantly alter net radiation. The

absolute changes in AR, HR, and GPP are also an order

of magnitude larger compared to open shrublands, and

the percentage changes are comparable to the imposed

change in LAI.

The changes for the other PFTs (woody savannas,

savannas, and grasslands) showed similar trends (not

shown), most noticeable in the carbon, rather than the

turbulent heat fluxes. Evergreen broadleaf trees (Fig. 5)

had the smallest percentage change in LAI since they

have the largest absolute LAI values and low inter-

annual variability (;2.8–3.4). Therefore, this PFT had

the smallest response in the carbon fluxes (24% to 6%),

with lower cross-correlations to LAI as compared to the

other PFTs (Table 1). Evergreen broadleaf trees also

showed a small positive correlation to HR of 0.46

(Table 1), while all other PFTs had a negative corre-

lation, showing that a dense canopy can enhance HR.

Another noticeable result for evergreen broadleaf trees

was that soil evaporation had a larger response to LAI as

compared to vegetation transpiration in both absolute

and percentage terms. This was a counterintuitive result,

as dense forested canopies would be expected to have a

larger response of vegetation evaporation to LAI com-

pared to soil evaporation. To further investigate this, we

conducted two extra simulations with large perturba-

tions to the control LAI of 650%.

Figure 6 shows the seasonal difference in LAI imposed

between the two experiments (150% minus250%) and

the subsequent changes to vegetation and soil evapora-

tion (we show contours rather than time series as the

imposed LAI for these simulations has no interannual

variability). As expected, a doubling of LAI results in an

overall increase in vegetation transpiration and decrease

in soil evaporation. However, the decrease in soil evap-

oration is almost twice as large as in the increase in veg-

etation transpiration, especially along the east coast

FIG. 4. As in Fig. 3, but for croplands (7.5% of land points).
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where most evergreen broadleaf trees are found. This is

further demonstrated in Fig. 7, showing the fraction of

vegetation transpiration as a function of evapotranspi-

ration (vegetation plus soil) for both experiments. Over

a semiarid continent, changes in LAI result in a stronger

response of soil evaporation as compared to vegetation

transpiration.

While there are clear differences in the month-to-

month variation of the heat, moisture, and carbon fluxes,

increases in one period may be cancelled by a decrease

later on. Additionally, we have not considered any

spatial patterns in the changes in LAI and carbon fluxes.

This is illustrated in Fig. 8, showing the gridded cumu-

lative monthly mean difference in LAI on carbon fluxes

(cumulative changes in LAI , 5 have been masked out

to highlight the largest changes). Clearly, the largest

changes in LAI and carbon fluxes are restricted to the

southeastern, rather than southwestern, croplands (see

Fig. 2). This is because of the imposed change in LAI

being almost twice as high for the southeastern, as

compared to the southwestern, croplands, as illustrated

in Figs. 9a and 9b, respectively. The larger response to

LAI in the southeast is due to the larger interannual

variation in precipitation in this region, which was used

to generate the LAI ensemble.

4. Discussion

The literature clearly suggests that the prescription of

LAI in LSMs has a strong influence on the surface heat,

moisture, and carbon fluxes. Hence we conducted a se-

ries of experiments to examine the influence of LAI

variability in CABLE, as it is a widely used LSM in the

Australian climate community, and this sensitivity has

not been previously tested.

Our results show relatively small impacts on the par-

titioning of available energy into the sensible and latent

heat fluxes. Other studies have found much larger im-

pacts; however, these were confined to regions of much

larger changes in LAI compared to the changes imposed

in this study. For example, Pitman et al. (1999) found

large changes in total evaporative fluxes, but these were

confined to regions where the absolute change in LAI

was up to 3. Similarly, Bonan et al. (1993) found that

FIG. 5. As in Fig. 3, but for evergreen broadleaf trees (4.9% of land points).
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LAI had a strong influence on the surface energy bal-

ance, but they focused on western U.S. conifer forests,

the LAI of which varies from approximately 5 to 13. The

imposed changes in LAI were much smaller in magni-

tude but realistic and plausible, that is, related to the cli-

matology. Evenwhen the LAIwas doubled, themagnitude

of the change was less than 1 for most of the continent

(Fig. 6a). Hence, the relatively small response of the

evaporative fluxes is due to a small (but realistic) per-

turbation in LAI.

The experiments with 650% of the control LAI

showed that doubling LAI resulted in a decrease in soil

evaporation, which is twice as large as the increase in

vegetation transpiration. This result is consistent with

other studies, which have shown that over half of the

water lost through evapotranspiration over the Austra-

lian continent is through soil evaporation and bypasses

plants almost entirely (Haverd et al. 2013). Similar re-

sults have been found elsewhere. Namely, van den Hurk

et al. (2003) showed that in relatively dry (moisture

limited) areas, where LAI values are relatively low,

changes in LAI cannot result in large changes in surface

heat and moisture fluxes as the land surface is already

constrained by available soil water. In other words, var-

iations in LAI cause the stronger response where sur-

face evaporation uses a large proportion of the available

energy.

Van den Hurk et al. (2003) did not allow for changes

in LAI to alter the surface albedo and thus omitted

a feedback important to our results. In our simulations,

the variations in the LAI imposed resulted in small

changes in surface albedo and, subsequently, small

changes in net radiation. The small change in albedo is

due to the relatively small perturbation in LAI imposed

FIG. 6. Differences in (a) LAI, (b) vegetation transpiration (EV; mmday21), and (c) soil evaporation (ES; mmday21) between the

experiments with150% and250% of the control LAI (the masked inland areas are regions where the gridded precipitation data used to

generate the LAI ensemble were missing, and hence, these points were excluded from all analysis for consistency).
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and because Australia is sparsely vegetated over large

regions. It is therefore the background soil albedo,

rather than the vegetation albedo, that has a large in-

fluence on overall surface albedo in these regions.

We found larger impacts on the terrestrial carbon

balance, with LAI strongly positively correlated to gross

primary production and autotrophic respiration and

negatively correlated with heterotrophic respiration,

consistent with both observational (Barr et al. 2004;

Saigusa et al. 2008; Duursma et al. 2009; Keith et al.

2012) and modeling (Puma et al. 2013) studies that re-

port a tight coupling between LAI and primary pro-

duction. This tight coupling is not unexpected as LAI is a

key variable in the parameterization of the carbon cycle.

It determines not only the area of leaf that is potentially

available to absorb light (and fix carbon via primary

production, i.e., GPP), but also the amount of light at-

tenuated and precipitation intercepted by the canopy.

This in turn influences soil temperature, moisture, and

evaporation, which drive heterotrophic respiration. How-

ever, of greater interest is the net ecosystem exchange

(NEE) of carbon, that is, the difference between GPP and

the sum of HR and AR. If NEE in negative, then the land

surface is a net source of carbon and a sink when positive.

In all our simulations, NEE was always positive for both

the control and the ensemble mean; hence, the changes in

LAI did not change the land surface to a source of carbon.

The largest impacts were found for croplands, which

have the highest interannual variability in LAI. The

changes were mostly restricted to the southeast, rather

than southwest, croplands as the imposed changed in

LAI was almost double in the former compared to the

latter region. The southeast of Australia experiences

higher interannual rainfall variability, as compared to

the southwest, owing to large-scale teleconnections

(Risbey et al. 2009), and this signal was reflected in the

LAI ensemble produced, as it is derived using gridded,

station-based precipitation and temperature data. The

least impact was found for evergreen broadleaf trees,

which had highest absolute LAI and lowest interannual

variability. These results are consistent with Guillevic

et al. (2002) and Puma et al. (2013), namely, that the

impact of LAI variability is less for denser vegetation

andmoisture-limited regions (low evaporative fraction).

While our results are broadly consistent with existing

literature, they are constrained by several caveats in-

herent of the study design. The model grid domain was

restricted to Australia because of the spatial extent of

the BAWAP precipitation and temperature data used

for generating the LAI ensemble, as well as bias cor-

recting the forcing data. Therefore, our results are largely

applicable to arid and/or semiarid regions. Nonetheless,

the results presented here should help inform the design

of a broad range of future climate simulations whereby

LAI is prescribed, especially when the focus is on the

terrestrial carbon cycle. Our results are also limited to

one particular LSM driven offline with a particular at-

mospheric forcing. Thus, our results would be worth

extending via a multimodel evaluation of the sensitivity

of LAI in LSMs that simulate the terrestrial carbon

FIG. 7. Ratio of vegetation evaporation to total evapotranspiration [i.e., EV/(ES1EV)] for the experiments with (a)150%and (b)250%

of the control LAI.
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cycle. Despite inevitable caveats, our results highlight

that the sensitivity testing of LSMs to LAI should be

extended to include the terrestrial carbon cycle (rather

than just heat and moisture fluxes). Additionally, the

sensitivity of crop biomes to LAI highlights a need for

the better representation of crop phenology in LSMs.

This, however, remains a difficult challenge as crops, in

contrast to other PFTs, are strongly and directly influ-

enced by human intervention.

5. Conclusions

The leaf area index (LAI) is a critical component of

any land surface model. In this study, we performed

a sensitivity analysis of heat and carbon fluxes to per-

turbations in LAI using the CABLE LSM over the

Australian continent on a monthly time scale. We

showed that, while the influences of LAI perturbations

on the heat and moisture fluxes were low, the impact on

the terrestrial carbon balance was large, especially for

croplands. Our results are consistent with earlier studies,

which have shown that plant functional types with high

interannual variability are the most sensitive to LAI

perturbations, while dense vegetation is less sensitive,

especially inmoisture-limited regimes. A key conclusion

is therefore that care should be taken in accurately

prescribing LAI, particularly when simulating the car-

bon cycle. Clearly, assigning fixed LAI to PFTs and/or

FIG. 8. Gridded cumulative difference in monthly mean LAI and carbon fluxes (Gg month21) between the control

simulation and the ensemble mean (cumulative changes in LAI , 5 have been masked out to highlight the largest

changes).
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using climatological means from remote sensing prod-

ucts will not accurately reflect the interannual variability

of LAI, which can have a large impact on the cumulative

carbon fluxes.

While our results focus on Australia, they provide

several useful conclusions to the broader LSM com-

munity. First, using an ensemble of LAI products in

simulations can be a very useful and straightforward

method in establishing one element of uncertainty, and

the method used to generate the LAI ensemble here can

be adapted to other regions and/or globally. Second,

there is a clear need to assess the influence of LAI on

the terrestrial carbon cycle at the global scale. To our

knowledge, no studies have systematically addressed

this issue, and this would provide a means to better

quantify the uncertainty in future changes in the global

terrestrial carbon cycle. Third, the sensitivities that we

find to LAI, particularly in respect of terrestrial carbon,

point to the urgent need to resolve the parameterization

of LAI more systematically in LSMs. Ideally, this is not

through better prescriptions of LAI; rather, it is via the

addition of leaf phenology modules to LSMs. This high-

lights an important area of development in CABLE, as

well as other LSMs that have no explicit dynamical

representation of LAI. Finally, we also note that for

a more complete assessment of the influence of LAI in

LSMs, both the representation of vegetation through

PFT maps and LAI variability should be analyzed par-

allel to each other.
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