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In the domain of space science, numerous ground-based and space-borne data
of various phenomena have been accumulating rapidly, making analysis and
scientific interpretation challenging. However, recent trends in the application
of artificial intelligence (AI) have been shown to be promising in the extraction
of information or knowledge discovery from these extensive data sets.
Coincidentally, preparing these data for use as inputs to the AI algorithms,
referred to as AI-readiness, is one of the outstanding challenges in leveraging
AI in space science. Preparation of AI-ready data includes, among other aspects:
1) collection (accessing and downloading) of appropriate data representing the
various physical parameters associated with the phenomena under study from
different repositories; 2) addressing data formats such as conversion from one
format to another, data gaps, quality flags and labeling; 3) standardizingmetadata
and keywords in accordance with NASA archive requirements or other defined
standards; 4) processing of raw data such as data normalization, detrending, and
data modeling; and 5) documentation of technical aspects such as processing
steps, operational assumptions, uncertainties, and instrument profiles. Making
all existing data AI-ready within a decade is impractical and data from future
missions and investigations exacerbates this. This reveals the urgency to set the
standards and start implementing themnow. This article presents our perspective
on the AI-readiness of space science data and mitigation strategies including
definition of AI-readiness for AI applications; prioritization of data sets, storage,
and accessibility; and identifying the responsible entity (agencies, private sector,
or funded individuals) to undertake the task.
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1 Introduction

Space science is characterized by the abundance of observational
data acquired by spacecraft and ground-based instruments. For
decades, statistical methods have been indispensable for the
analysis and interpretation of these data. With the advancement
of technology, these data are ever increasing in volume and
diversity, and it is becoming impractical to extract useful scientific
information from these vast volumes (terabytes and petabytes) of
data with traditional methods. However, the implementation of
artificial intelligence (AI) in the space sciences have shown to be
a powerful tool for data analysis and data mining with predictive
capability. AI methods such as machine learning (ML) and neural
networks (NN) are built on advanced statistical methods and data
science (DS), and have proven to be greatly successful in augmenting
physics-based and empirical modeling, and data analysis (e.g.,
Lundstedt, 1996; Wintoft and Lundstedt, 1997; Bobra and Couvidat,
2015; Ansdell et al., 2018; McGranaghan et al., 2018; Shallue
and Vanderburg, 2018; Camporeale, 2019; Camporeale et al.,
2019; Barros et al., 2020; Camporeale and SOC-ML-Helio, 2020;
Nikolaou et al., 2020; Osborn et al., 2020; Armstrong et al., 2021;
Azari et al., 2021; de Beurs et al., 2021; McGranaghan et al., 2021;
Himes et al., 2022; Wing et al., 2022). This includes, but is not
limited to, methods such as time series analysis, segmentation,
Bayesian methods, probabilistic inference, information theory,
and surrogate modeling. These methods are critical for future
scientific findings and discoveries. While the interpretability and
explainability of the AI models built on various techniques are still
being explored and established, AI and DS are revolutionizing the
way scientific problems in the space physics are conceptualized and
addressed.

A review of these methods as applied to the space sciences has
been carried out in the form of a virtual international conference,
“Applications of Statistical Methods and Machine Learning in
the Space Sciences” organized by the Space Science Institute
(SSI) during 17–21 May 2021 (http://spacescience.org/workshops/
mlconference2021.php). This multidisciplinary conference brought
together experts in various fields to compare and contrast AI and
statistical methods and to assess the needs of different space science
subfields. The conference proceedings are published as a Frontiers
topical collection (Poduval et al., 2023).

The highlight of the conference was the discussion sessions
designated to handle different topics. “AI-readiness” (defined and
discussed in detail in Section 3) of the various spacecraft data
was one of the topics common to all the 45-min discussion
sessions each day. Topics such as availability and easy access to
various data sets, data preprocessing, and metadata guidelines
were a few of the main aspects discussed. Inspired by these
preliminary discussions and our understanding of the significance
of the issues related to accessing the various data sets and their
(pre)processing in the context of AI applications, we explored
these aspects in greater detail after the conference which resulted
in a multi-authored white paper (Poduval et al., 2022), “AI-ready
Data in Solar Physics and Space Science: Concerns, Mitigation
and Recommendations”, submitted to the National Academies of
Science, Engineering, and Medicine’s Decadal Survey for Solar and
Space Physics (Heliophysics) 2024–2033. In the article presented
here, we summarize the major recommendations to the community

such as known problems with accessing existing data and ways of
addressing them efficiently in a cost-effective manner with the aim
of providing repositories of AI-ready data in all domains of space
science within the next decade.

While AI application is the main driving need behind AI-
ready data, processed data sets of this nature and access methods
are also useful for many broader applications (including scientific
investigations using conventional methods) that benefit from
increased data accessibility and unified formats for scientific
applications utilizing space science data. As AI/ML techniques are
expected to become a common practice in the space sciences in the
coming decades, (Figure 1 in Azari et al., 2021), a clearly defined
standard would prove valuable to all space science disciplines. Due
to the wide range of applicability of ML methods in addressing
scientific problems in all the fields of space science—especially space
weather and related studies as evidenced by the many works cited in
Section 1—we are not discussing specific science goals in this article.

2 Common problems, major concerns

Researchers in the space sciences implementing AI methods
have encountered several difficulties with the existing data sets. As
discussed at the SSI virtual conference (Poduval et al., 2023) and
other meetings in space science, getting the existing data organized,
standardized, and easily accessible for implementing AI methods
is a major challenge. We argue that while these data are publicly
available, using them for AI applications requires considerable effort
by individual researchers pursuing a specific science question. In
this section, we compiled the common problems encountered while
using these data for implementing AI methods. Similar problems
and limitations exist in ground-based data and in the data fromother
domains such as atmospheric sciences, astronomy and cosmology.
These and other related problems call for focused studies on the
existing barriers to utilizing these data as well as the development
of a well documented, consistent set of data easily accessible to the
scientific community in the near future.

2.1 The need of very large data sets and
missing data

Methods of AI and DS often require very large data sets
to obtain statistically reliable results and are often intolerant of
missing data. Angryk et al. (2020) have carried out an extensive
study to homogenize data and eliminate data gaps, and created
a set of multivariate time series data from the Space Weather
HMI Active Region Patch (SHARP) series [here, HMI stands for
Helioseismic and Magnetic Imager on board the Solar Dynamics
Observatory (SDO)]. Many existing ML packages require input
data to be organized in special formats in which case reformatting
the vast stretches of data is often very time consuming. Below we
provide some specific examples of solar and interplanetary data
that demonstrate the immediate need to organize data from various
spacecraft so as to have large sets of AI-ready data in the immediate
future.

1. Solar wind data measured close to Earth: A survey of Wind data
sources available through the Space Physics Data Facility (SPDF)
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revealed that there exist about 128 distinct data sources in various
locations, most of which are not comprehensive in the types of
data provided, and the physical parameters measured by them
are not consistent; that is, if some provide magnetometer data,
othersmay be providing parameters such as solar wind density or
velocity. Moreover, for data of a single type (e.g., magnetic field),
the measurement cadence and the coordinate system in which
the data are measured will be different for different sources. (see
Section 5)

2. OMNI Solar Wind Data: One of the long-term data sets
extensively used in space science and solar physics is the
in situ solar wind measurements since the 1960s (https://
spdf.gsfc.nasa.gov or https://omniweb.gsfc.nasa.gov). These are
numerical time series data. While the data are easily accessible
and well documented, these are multi-spacecraft compilations
that are propagated to a reference distance near the Earth’s bow-
shock region and therefore lack critical information for specific
calculations relevant to magnetospheric studies.

3. Solar Imagery: Another data set that would benefit (if used
for AI applications) from more information on data and
metadata is solar imagery such as the ones provided by SDO
(https://sdo.gsfc.nasa.gov/data/) and the Solar and Heliospheric
Observatory (SOHO: https://soho.nascom.nasa.gov). Though
these spacecraft and many similar ones record and store data
digitally, the resolution, cadence and other relevant information
are so different among them that it is challenging to combine
them for a specific project, especially using ML. This is because
data pre-processing becomes tedious or even impossible due to
lack of sufficient information and expertise in cross-calibration
of different spacecraft data.

2.2 Inconsistency of the formats of the
calibrated and processed spacecraft data

Typically, the calibrated and processed data from various
spacecraft exist in a variety of formats. As discussed above,
it is easier for users, especially for those implementing AI
techniques, if all the data of a particular type (e.g., solar wind
measurements) from various spacecraft have the same format, or
have information on, or have access to a software package for,
converting from one format to another easily. This is in agreement
with the NASA’s Transform to Open Science (TOPS, https://
nasa.github.io/Transform-to-Open-Science/) mission and Science
Policy Document (SPD-41a, https://science.nasa.gov/sciencered/
s3fs-public/atoms/files/SMDinformation-policy-SPD-41a.pdf) that
requires transparency and access to data and software for NASA-
funded science investigations and missions.

2.3 Insufficient access to orbital
information and properties of the location
region

An important aspect to consider when getting the space science
data AI-ready, at least in some cases, is the limited or little access
to orbital information and the characteristics of the region in which
the observations are made, as described in Item 1 in Section 2.1. For

example, the spacecraft may be in the solar wind inside or outside
the foreshock region. If the spacecraft is at a substantial distance
from Earth, the data need to be propagated to some reference point
such as the subsolar bow shock. Moreover, since most of these
spacecraft are in eccentric orbits, the solarwind is only intermittently
available and a continuous record requires the assembly of data from
multiple sources. This is a common problem for planetary science
and heliophysics (e.g., Ruhunusiri et al., 2018).

2.4 Locating available data for a specific
scientific problem

It requires considerable domain knowledge and spacecraft
details to identify available data that can be used for a specific
scientific problem. Understanding of the instruments and their
characteristics is necessary for data reduction and cross calibration
of the various data sets from different sources so as to produce
data sets that have a uniform coordinate system and cadence. An
illustration of how complex this can be is provided by the National
Science Foundation (NSF) funded SuperMAGproject at the Applied
Physics Laboratory of the Johns Hopkins University. This project
has acquired ground magnetometer data from almost all existing
magnetometers starting in 1975. Currently this includes more than
200 data sources. The data are corrected and transformed to a
consistent coordinate system and interpolated to a fixed cadence.
Quiet backgrounds for every station and component are calculated
and subtracted from the data to obtain perturbations caused by
magnetic activity.

2.5 Archival of synthetic data and public
access

While there exist NASA-funded repositories for synthetic data
(e.g., models and simulations) generated by individual researchers
in certain space science domains, there is no central repository
publicly available in other fields of space science. Lack of such an
archival can be a major limitation in addressing specific science
topics where observational data are insufficient or sub-optimal. For
example, in the field of exoplanets, where use of ML has grown over
the past decade, especially for areas of exoplanet science lacking
in measured data, (e.g., Ansdell et al., 2018; Márquez-Neila et al.,
2018; Shallue and Vanderburg, 2018; Zingales and Waldmann,
2018; Cobb et al., 2019; Barros et al., 2020; Nikolaou et al., 2020;
Osborn et al., 2020; Armstrong et al., 2021; de Beurs et al., 2021;
Emsenhuber et al., 2021; Himes et al., 2022), investigators rely on
synthetic data to employ ML methods (e.g., for atmospheric
retrieval Márquez-Neila et al., 2018; Zingales and Waldmann, 2018;
Cobb et al., 2019; Himes et al., 2022). The NASA Exoplanet Archive
and Goddard’s Exoplanet Modeling and Analysis Center (EMAC:
https://emac.gsfc.nasa.gov) offer hosting of large exoplanet-related
data sets with metadata. However, investigators who generate
synthetic data may elect to not share their data, and those who share
their data may have provided insufficient metadata for applications
beyond what was considered in their use case. Adherence to FAIR
(Findable, Accessible, Interoperable, Reusable) standards (see Item
VI in Section 3) may be useful in this scenario. Looking ahead to the
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coming decades, open access to these data will become increasingly
important in order to discern the optimal ML methods for these
types of problems. Synthetic data in other fields such as solar physics
and magnetospheric science should also be archived and made
accessible to the research community in a similar fashion, wherever
appropriate.

3 AI-readiness

It is well-known that some AI-applications demand enormous
volumes (terabytes and petabytes) of data. Equally important are
the “pre-processing” requirements and normalization of the data
sets. All of these critically depend on the accessibility to the data
and the various key information of data collection and processing
(or metadata) such as cadence, resolution, calibration, format, and
standardization (or information for standardization) of data from
multiple sources (e.g., Items 1 and 3 in Section 2.1). Therefore, by
AI-readiness, we imply that, “the data must be queryable, easily
accessible, and include location information and a description of the
data (metadata)”. The analogy would be to treat space science data
like LEGO R© pieces: standardized and modular. For greater clarity,
we further elaborate on the definition of AI-readiness as described
below.

I. The data must be well documented by addressing
technicalities including, but not limited to, hard-coded
thresholds, processing steps, possible causal relationships,
potential latent variables/known unknowns, anomalies, noise
level estimates, saturation levels, any or all operational
assumptions made, uncertainty, ideal and updated
instrumental profiles, biases, and ambiguities. This is
expected to minimize the challenge of data (pre)processing
for non-domain experts and, thereby, reduce the risk of
misinterpretation of the data.

II. Metadata must include information such as spacecraft
location, measure of instrumental degradation (monitor data
drift), image resolution, and data shape.

III. It is envisioned that data certification or data validation
issued through automation or peer review (similar to
benchmarks for algorithms and referee reports for papers)
would ensure community-wide standards and best-practices
for data integrity and reproducibility. These should appear in
a data catalogue and point to approved queryable databases.

IV. Include operations performed on the data (levels of data
processing and pre-processing) in the flags because these
operations could mask or confound ML pattern discovery.

V. If labels or annotations are part of the data set, include
information on how the labels are obtained; that is, whether
by expert labelers or volunteers. If volunteers, indicate which
guidelines they used and how well defined were those
guidelines to obtain a measure of uncertainty or annotation
variability.

VI. Data should be flagged on a quality measure and adhere to
FAIR data principles.

VII. Queryable flags would facilitate efficient selection of
representative training sets.

VIII. Quality should encompass completeness, accuracy,
availability, consistency, and latency.

4 AI-ready data preparation

In this section, we summarize the standards for the technical
aspects in the preparation of AI-ready data based on the best
practices, guidelines and tasks in the preparation for AI-ready data
at each stage from data collection to data release.

4.1 Data collection

Data repositories such as SPDF hold spacecraft data extensively
used in the space sciences, particularly in space weather studies.
However, there exist significant challenges in using them in
ML applications due to non-uniform data formats and lack of
appropriate metadata as discussed in Section 2. Therefore, the
following aspects must be ensured during data collection.

a. Adopt a common format for data representation, such as
NetCDF, CDF, HDF, or FITS.

b. Include quality flag(s).
c. Implement metadata tags suitable for the science topic as per

the NASA Space Physics Archive Search and Extract (SPASE)
standards for metadata.

d. Follow FAIR (Item VI in Section 3) data principles for open
access to AI/ML ready data.

e. Develop open-source code for transforming data from one
standard representation to another.

4.2 Data correction and normalization

These are two important steps to handle missing data, remove
outliers and normalize data across multiple sources. However, the
precisemanner in which the data cleaning operations are performed
are often specific to the science topic being solved and the ML
technique being used. Data normalization is a necessary data
processing step to ensure that data from multiple sensors measuring
similar observations adhere to common calibration metrics—e.g.,
instruments may be recording data at varying cadences which may
require that they are resampled at a common cadence. Common
questions include:

a. What is the tolerable length of data gaps?
b. How is the data interpolated and how does it impact data

quality?

4.3 Data annotation

Including annotation tags is an integral part of data preparation
for AI-readiness as it facilitates their (re)use among researchers
with or without domain expertise. Listed below are a few essential
tags:

a. Data quality measure.
b. Annotation of any kind of data pre-processing, required for

reproducibility.
c. Annotation of features that are of scientific interest.
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4.4 Machine learning operations (ML-Ops)

There are aspects to data preparation that must be considered
to successfully transfer the ML and AI models from research to
operations. Due to the data intensive nature of ML and AI models,
they can be very sensitive to changes in the underlying data or
applications. Changes in data patterns over time occur as sensors age
or get replaced as new sensors are added (wherever applicable) or as
underlying data correction and normalization identify and correct
previously unknown data contamination. Therefore, it is important
to annotate each step of the data preparation process in order that
data provenance be available to the AI/ML model so that it may be
retrained on the new data.

5 Mitigation and action items - Our
perspective

By defining AI-readiness for implementation and outlining the
requirements for creating AI-ready data within a few years, we
recommend a plausible course of action to achieve this. Getting the
existing data AI-ready by accounting for the problems discussed in
the foregoing sessions will require active involvement of scientists
working on science projects using these data sets. To achieve this
within the next few years, we envisage government agencies make
available research opportunities to prepare, utilize, and archive data
sets useful for ML applications in partnership with funding projects
utilizing applications of AI. Investigators must carry out a relevant
scientific study using the data they have organized to be AI-ready to
demonstrate that the data are adequately documented and simple to
use.

To demonstrate this idea, let us take our example of near-Earth
observations of the solar wind (Item 1 in Section 2.1). In order to
get these data organized, one must fetch the data stored in different
formats at the various repositories, re-process the original data (if
necessary), apply new calibrations when required, and organize the
output in simple flat files.Moreover, the datamust be transformed to
a single coordinate system such as geocentric solar magnetospheric
(GSM) and at a fixed cadence. These data are to be stored as
time series with missing data flags wherever necessary. Orbit and
attitude information should be combined with the observations and
provided as metadata, preferably in the standard SPASE: https://
spase-group.org/index.html format. Providing User Guides with
descriptions of processing history and limitations of the data would
also be useful. The observations and metadata should be placed in a
public repository for the easy access of the public and the research
community.

A possible project, in the above example, would be the response
function of selected magnetospheric variables to solar wind drivers
using neural networks. Functions obtained with data propagated
from L1 to the bow shock could be compared to the same function
determined from near-Earth observations. Another example is
getting the SDO and SOHO data AI-ready as mentioned in Item 3
in Section 2.1. The SDO-ML project, an effort of the 2018 NASA
Frontier Development Laboratory Program (FDL: e.g., Galvez et al.,

2019; Shneider et al., 2021), is an attempt to overcome the difficulties
discussed in Item 3 in Section 2.1 but more extensive efforts are
urgently needed.

We suggest building investigation teams with strong
collaboration between research scientists (domain experts) and
data scientists. This would ensure that the data are structured
conveniently for research and are organized in a logical manner
for computer access by AI algorithms. The projects would require
identification of data sources (scope of prioritization of space science
data to be AI-ready) and plans for creation (or modification) of
metadata and other aspects of AI-readiness in accordance with
suggestions in Section 3 and Section 4. An added advantage of
such collaboration and projects would be the open-source software
interfaces that assist in using the original data sets that can be
expected as secondary deliverables.

The process of enabling existing data to be AI-ready will
require investment and continual updates of repositories (e.g.,
updating calibration methods, error corrections, data from new
spacecraft missions and ground-based observatories), ensuring the
implementation of the requirements outlined in Section 3.

6 Discussion

We have identified the major difficulties in accessing and taking
full advantage of existing space science data when implementing AI
and DS methods. To address these problems and obtain the space
science data AI-ready within the coming decade, we recommend
that the scientific community and funding agencies support multi-
year data engineering efforts led by domain experts who aim
at providing AI-ready data that users could easily access from
a publicly available repository for specific problems relevant to
space science. In recognition of the multidisciplinary nature of this
problem, such a program should include both data scientists and
AI experts. We suggest that this effort to mitigate the obstacles
faced by researchers implementing ML methods to be pursued as
a project similar to the NASA/NSSDC efforts to create the OMNI
database (https://omniweb.gsfc.nasa.gov). NSSDC uses data from
the L1 point, 250 R⊕ (Earth-radius) upstream, to propagate it to the
subsolar bow shock and when a spacecraft changes, the new data
are cross calibrated to maintain a consistent record. The availability
of the OMNI data has enabled a very large number of studies of
the solar wind interaction with Earth. To achieve our vision of AI-
ready data, we recommend that government agencies such as NASA
and NSF create new research program(s) like NSSDC that would
facilitate data engineers and scientists to come together to prepare
the AI-ready data sets.We emphasize that this is envisaged as a long-
term effort focused on getting AI-ready data and extends beyond
applications of AI methods.
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