1,773 research outputs found

    数値地図データセットからの情報抽出および汎用地図ツールへの転用

    Get PDF
    We followed the abundance and distribution of ammonia-oxidizing Archaea (AOA) in the North Sea from April 2003 to February 2005 and from October 2007 to March 2008 by quantification of archaeal genes and core glycerol dibiphytanyl glycerol tetraether (GDGT) membrane lipids in suspended particulate matter, to determine whether their abundance in the North Sea is seasonal. GDGT and gene abundance increased during winters and was low during the summer. Crenarchaeol-a GDGT specific to AOA-was a major fraction of the GDGTs and varied in concert with AOA gene abundance, indicating that AOA are the predominant source of crenarchaeol. The presence of crenarchaeol-based intact polar lipids (IPLs) confirmed that the GDGTs recovered were derived from living AOA, as IPLs are rapidly degraded upon cell senescence and thus their occurrence represents living biomass more robustly than their fossil (i.e., core GDGT) counterparts. Dark incubations of North Sea water sampled during the 2007-2008 seasonal cycle with C-13-labeled bicarbonate revealed incorporation of inorganic carbon into IPL-derived GDGTs, directly showing autotrophic production of Thaumarchaeota biomass during the winter. Inhibition of C-13 uptake by nitrification inhibitors confirmed that ammonia oxidation was the main source of energy for carbon fixation. Winter blooms of planktonic AOA in the North Sea were recurrent and predictable, occurring annually between November and February, emphasizing the potential importance of AOA in nitrogen cycling in the North Sea

    A new 111 type iron pnictide superconductor LiFeP

    Full text link
    A new iron pnictide LiFeP superconductor was found. The compound crystallizes into a Cu2Sb structure containing an FeP layer showing superconductivity with maximum Tc of 6K. This is the first 111 type iron pnictide superconductor containing no arsenic. The new superconductor is featured with itinerant behavior at normal state that could helpful to understand the novel superconducting mechanism of iron pnictide compounds.Comment: 3 figures + 1 tabl

    Structure and Function of a Mycobacterial NHEJ DNA Repair Polymerase

    Get PDF
    Non homologous end-joining (NHEJ)-mediated repair of DNA double-strand breaks in prokaryotes requires Ku and a specific multidomain DNA ligase (LigD). We present crystal structures of the primase/polymerisation domain (PolDom) of Mycobacterium tuberculosis LigD, alone and complexed with nucleotides. The PolDom structure combines the general fold of the archaeo-eukaryotic primase (AEP) superfamily with additional loops and domains that together form a deep cleft on the surface, likely used for DNA binding. Enzymatic analysis indicates that the PolDom of LigD, even in the absence of accessory domains and Ku proteins, has the potential to recognise DNA end-joining intermediates. Strikingly, one of the main signals for the specific and efficient binding of PolDom to DNA is the presence of a 5'-phosphate group, located at the single/double-stranded junction at both gapped and 3'-protruding DNA molecules. Although structurally unrelated, Pol lambda and Pol mu, the two eukaryotic DNA polymerases involved in NHEJ, are endowed with a similar capacity to bind a 5'-phosphate group. Other properties that are beneficial for NHEJ, such as the ability to generate template distortions and realignments of the primer, displayed by Pol lambda and Pol mu, are shared by the PolDom of bacterial LigD. In addition, PolDom can perform non-mutagenic translesion synthesis on termini containing modified bases. Significantly, ribonucleotide insertion appears to be a recurrent theme associated with NHEJ, maximised in this case by the deployment of a dedicated primase, although its in vivo relevance is unknown

    A cost-reducing extracorporeal membrane oxygenation (ECMO) program model: a single institution experience.

    Get PDF
    BACKGROUND: The worldwide demand for ECMO support has grown. Its provision remains limited due to several factors (high cost, complicated technology, lack of expertise) that increase healthcare cost. Our goal was to assess if an intensive care unit (ICU)-run ECMO model without continuous bedside perfusionists would decrease costs while maintaining patient safety and outcomes. METHOD: A new ECMO program was implemented in 2010, consisting of dedicated ICU multidisciplinary providers (ICU-registered nurses, mid-level providers and intensivists). In year one, we introduced an education platform, new technology and dedicated space. In year two, continuous bedside monitoring by perfusionists was removed and new management algorithms designating multidisciplinary providers as first responders were established. The patient safety and cost benefit from the removal of the continuous bedside monitoring of the perfusionists of this new ECMO program was retrospectively reviewed and compared. RESULTS: During the study period, 74 patients (28 patients in year 1 and 46 patients in year 2) were placed on ECMO (mean days: 8 ± 5.7). The total annual hospital expenditure for the ECMO program was significantly reduced in the new model (234,000inyear2vs.234,000 in year 2 vs. 600,264 in year 1), showing a 61% decrease in cost. This cost decrease was attributed to a decreased utilization of perfusion services and the introduction of longer lasting and more efficient ECMO technology. We did not find any significant changes in registered nurse ratios or any differences in outcomes related to ICU safety events. CONCLUSION: We demonstrated that the ICU-run ECMO model managed to lower hospital cost by reducing the cost of continuous bedside perfusion support without a change in outcomes

    Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure

    Get PDF
    Greenland Ice Sheet mass loss has recently increased because of enhanced surface melt and runoff. Since melt is critically modulated by surface albedo, understanding the processes and feedbacks that alter albedo is a prerequisite for accurately forecasting mass loss. Using satellite imagery, we demonstrate the importance of Greenland’s seasonally fluctuating snowline, which reduces ice sheet albedo and enhances melt by exposing dark bare ice. From 2001 to 2017, this process drove 53% of net shortwave radiation variability in the ablation zone and amplified ice sheet melt five times more than hydrological and biological processes that darken bare ice itself. In a warmer climate, snowline fluctuations will exert an even greater control on melt due to flatter ice sheet topography at higher elevations. Current climate models, however, inaccurately predict snowline elevations during high melt years, portending an unforeseen uncertainty in forecasts of Greenland’s runoff contribution to global sea level ris

    Contrasting Pressure Effects in Sr2VFeAsO3 and Sr2ScFePO3

    Full text link
    We report the resistivity measurements under pressure of two Fe-based superconductors with a thick perovskite oxide layer, Sr2VFeAsO3 and Sr2ScFePO3. The superconducting transition temperature Tc of Sr2VFeAsO3 markedly increases with increasing pressure. Its onset value, which was Tc{onset}=36.4 K at ambient pressure, increases to Tc{onset}=46.0 K at ~4 GPa, ensuring the potential of the "21113" system as a high-Tc material. However, the superconductivity of Sr2ScFePO3 is strongly suppressed under pressure. The Tc{onset} of ~16 K decreases to ~5 K at ~4 GPa, and the zero-resistance state is almost lost. We discuss the factor that induces this contrasting pressure effect.Comment: 5 pages, 4 figures, to be published in J. Phys. Soc. Jpn. No.12 (2009

    New proglacial meteorology and river stage observations from Inglefield Land and Pituffik, NW Greenland

    Get PDF
    Meltwater runoff from the Greenland ice sheet (GrIS) is an important contributor to global sea level rise, but substantial uncertainty exists in its measurement and prediction. Common approaches for estimating ice sheet runoff are in situ gauging of proglacial rivers draining the ice sheet and surface mass balance (SMB) modeling. To obtain hydrological and meteorological data sets suitable for both runoff stage characterization and, pending the establishment of stage–discharge curves, SMB model evaluation, we established an automated weather station (AWS) and a cluster of traditional and experimental river stage sensors on the Minturn River, the largest proglacial river draining Inglefield Land, NW Greenland. Secondary installations measuring river stage were installed in the Fox Canyon River and North River at Pituffik Space Base, NW Greenland. Proglacial runoff at these sites is dominated by supraglacial processes only, uniquely advantaging them for SMB studies. The three installations provide rare hydrological time series and an opportunity to evaluate experimental measurements of river stage from a harsh, little-studied polar region. The installed instruments include submerged vented and non-vented pressure transducers, a bubbler sensor, experimental bank-mounted laser rangefinders, and time-lapse cameras. The first 3 years of observations (2019 to 2021) from these stations indicate (a) a meltwater runoff season from late June to late August/early September that is roughly synchronous throughout the region; (b) the early onset (∼ 23 June to 8 July) of a strong diurnal runoff signal in 2019 and 2020, suggesting minimal meltwater storage in snow and/or firn; (c) 1 d lagged air temperature that displays the strongest correlation with river stage; (d) river stage that correlates more strongly with ablation zone albedo than with net radiation; and (e) the late-summer rain-on-ice events appear to trigger the region's sharpest and largest floods. The new gauging stations provide valuable in situ hydrological observations that are freely available through the PROMICE network (https://promice.org/weather-stations/, last access: 14 September 2023).</p

    Sperm Quality of Hatchery-Reared Lake Trout Throughout the Spawning Season

    Get PDF
    The objective of this study was to investigate variation in sperm quality metrics (motility, velocity, linearity, longevity, and density) of hatchery-reared Lake Trout Salvelinus namaycush throughout the spawning season. Seasonal variation in sperm quality was investigated using both a regression and repeated-measures approach. Sperm was collected from the same 16 individuals over four sampling periods, separated by 3-week intervals. Regression analyses showed that 727% of the variation in sperm traits could be explained by seasonal variation, indicating that seasonality can have a significant impact on the quality of sperm. Significant positive linear relationships were found for percent motility and linearity at 5s postactivation. Significant negative quadratic relationships were found for velocity at 5s postactivation, longevity, and density, whereas a positive quadratic relationship was found for linearity at 10s postactivation. Repeated measures ANOVAs showed a significant effect of season for percent motility and linearity at 5 and 10s postactivation, velocity at 10s postactivation, and longevity. Our findings are important for optimizing fertilization protocols for hatchery production and can also be used to understand reproductive biology and ecology of wild Lake Trout stocks. Received March 15, 2012; accepted June 30, 201
    corecore