180 research outputs found

    Interplay among work function, electronic structure and stoichiometry in nanostructured VO: X films

    Get PDF
    The work function is the parameter of greatest interest in many technological applications involving charge exchange mechanisms at the surface. The possibility to produce samples with a controlled work function is then particularly interesting, albeit challenging. We synthetized nanostructured vanadium oxide films by a room temperature supersonic cluster beam deposition method, obtaining samples with tunable stoichiometry and work function (3.7-7 eV). We present an investigation of the electronic structure of several vanadium oxide films as a function of the oxygen content via in situ Auger, valence-band photoemission spectroscopy and work function measurements. The experiments probed the partial 3d density of states, highlighting the presence of strong V 3d-O 2p and V 3d-V 4s hybridizations which influence 3d occupation. We show how controlling the stoichiometry of the sample implies control over work function, and that the access to nanoscale quantum confinement can be exploited to increase the work function of the sample relative to the bulk analogue. In general, the knowledge of the interplay among work function, electronic structure, and stoichiometry is strategic to match nanostructured oxides to their target applications

    Low-frequency modes in the Raman spectrum of sp-sp2 nanostructured carbon

    Full text link
    A novel form of amorphous carbon with sp-sp2 hybridization has been recently produced by supersonic cluster beam deposition showing the presence in the film of both polyynic and cumulenic species [L. Ravagnan et al. Phys. Rev. Lett. 98, 216103 (2007)]. Here we present a in situ Raman characterization of the low frequency vibrational region (400-800 cm-1) of sp-sp2 films at different temperatures. We report the presence of two peaks at 450 cm-1 and 720 cm-1. The lower frequency peak shows an evolution with the variation of the sp content and it can be attributed, with the support of density functional theory (DFT) simulations, to bending modes of sp linear structures. The peak at 720 cm-1 does not vary with the sp content and it can be attributed to a feature in the vibrational density of states activated by the disorder of the sp2 phase.Comment: 15 pages, 5 figures, 1 tabl

    Collective Autoionization in Multiply-Excited Systems: A novel ionization process observed in Helium Nanodroplets

    Get PDF
    Free electron lasers (FELs) offer the unprecedented capability to study reaction dynamics and image the structure of complex systems. When multiple photons are absorbed in complex systems, a plasma-like state is formed where many atoms are ionized on a femtosecond timescale. If multiphoton absorption is resonantly-enhanced, the system becomes electronically-excited prior to plasma formation, with subsequent decay paths which have been scarcely investigated to date. Here, we show using helium nanodroplets as an example that these systems can decay by a new type of process, named collective autoionization. In addition, we show that this process is surprisingly efficient, leading to ion abundances much greater than that of direct single-photon ionization. This novel collective ionization process is expected to be important in many other complex systems, e.g. macromolecules and nanoparticles, exposed to high intensity radiation fields

    accessing the fractal dimension of free clusters in supersonic beams

    Get PDF
    In this paper a method for the quantitative determination of a morphology descriptor of free clusters with complex nanostructure is presented and applied to transition metal nanoparticles produced by a pulsed vaporization source. The method, which is based on the low-pressure aerodynamic mobility of neutral particles, can be applied as a characterization tool to a broad class of gas-phase nanoparticle sources for on-line investigation of particle growth and for quantifying coalescence versus agglomerate aggregation. We report on the application of this method for the characterization of free titanium clusters produced by a pulsed microplasma cluster source in the size range of approximately 300–6000 atoms. The clusters have an open fractal-like structure, with the fractal dimension depending on their thermal history during growth and evolving towards softer aggregates for longer residence times where lower-temperature conditions characterize the growth environment

    Poly(methyl methacrylate) - Palladium clusters nanocomposite formation by supersonic cluster beam deposition: a method for microstructured metallization of polymer surfaces

    Full text link
    Nanocomposite films were fabricated by supersonic cluster beam deposition (SCBD) of palladium clusters on Poly(methyl methacrylate) (PMMA) surfaces. The evolution of the electrical conductance with cluster coverage and microscopy analysis show that Pd cluster are implanted in the polymer and form a continuous layer extending for several tens of nanometers beneath the polymer surface. This allows the deposition, using stencil masks, of cluster-assembled Pd microstructures on PMMA showing a remarkably high adhesion compared to metallic films obtained by thermal evaporation. These results suggest that SCBD is a promising tool for the fabrication of metallic microstructures on flexible polymeric substrates.Comment: 11 pages, 3 figure

    core level spectroscopy of free titanium clusters in supersonic beams

    Get PDF
    Synchrotron radiation x-ray absorption spectroscopy (XAS) is one of the most powerful techniques to interrogate the local electronic structure and chemical status of bulk and nanostructured systems. The application of this technique to the study of size effects in free clusters of transition metal atoms would advance substantially fundamental knowledge of nano-objects and the tailoring of their magnetic and catalytic properties. To date core level spectroscopy of free transition metal clusters has been out of reach due to the lack of a cluster source able to produce clusters in the gas phase with a density suitable for synchrotron radiation sources. Here we demonstrate the XAS characterization of free titanium clusters in a supersonic molecular beam. We use a high-intensity cluster beam source coupled to a synchrotron beamline to investigate the size dependence of core level excitation of Tin clusters in the mass range 1

    Ultrafast relaxation of photoexcited superfluid He nanodroplets

    Get PDF
    The relaxation of photoexcited nanosystems is a fundamental process of light-matter interaction. Depending on the couplings of the internal degrees of freedom, relaxation can be ultrafast, converting electronic energy in a few fs, or slow, if the energy is trapped in a metastable state that decouples from its environment. Here, we study helium nanodroplets excited resonantly by femtosecond extreme-ultraviolet (XUV) pulses from a seeded free- electron laser. Despite their superfluid nature, we find that helium nanodroplets in the lowest electronically excited states undergo ultrafast relaxation. By comparing experimental pho- toelectron spectra with time-dependent density functional theory simulations, we unravel the full relaxation pathway: Following an ultrafast interband transition, a void nanometer-sized bubble forms around the localized excitation (He ) within 1 ps. Subsequently, the bubble collapses and releases metastable He at the droplet surface. This study highlights the high level of detail achievable in probing the photodynamics of nanosystems using tunable XUV pulses

    The first search for bosonic super-WIMPs with masses up to 1 MeV/c2^2 with GERDA

    Get PDF
    We present the first search for bosonic super-WIMPs as keV-scale dark matter candidates performed with the GERDA experiment. GERDA is a neutrinoless double-beta decay experiment which operates high-purity germanium detectors enriched in 76^{76}Ge in an ultra-low background environment at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy. Searches were performed for pseudoscalar and vector particles in the mass region from 60 keV/c2^2 to 1 MeV/c2^2. No evidence for a dark matter signal was observed, and the most stringent constraints on the couplings of super-WIMPs with masses above 120 keV/c2^2 have been set. As an example, at a mass of 150 keV/c2^2 the most stringent direct limits on the dimensionless couplings of axion-like particles and dark photons to electrons of gae<3⋅10−12g_{ae} < 3 \cdot 10^{-12} and αâ€Č/α<6.5⋅10−24{\alpha'}/{\alpha} < 6.5 \cdot 10^{-24} at 90% credible interval, respectively, were obtained.Comment: 6 pages, 3 figures, submitted to Physical Review Letters, added list of authors, updated ref. [21

    Ultrafast resonant interatomic coulombic decay induced by quantum fluid dynamics

    Get PDF
    Interatomic processes play a crucial role in weakly bound complexes exposed to ionizing radiation; therefore, gaining a thorough understanding of their efficiency is of fundamental importance. Here, we directly measure the timescale of interatomic Coulombic decay (ICD) in resonantly excited helium nanodroplets using a high-resolution, tunable, extreme ultraviolet free-electron laser. Over an extensive range of droplet sizes and laser intensities, we discover the decay to be surprisingly fast, with decay times as short as 400 fs, nearly independent of the density of the excited states. Using a combination of time- dependent density functional theory and ab initio quantum chemistry calculations, we elucidate the mechanisms of this ultrafast decay process, where pairs of excited helium atoms in one droplet strongly attract each other and form merging void bubbles, which drastically accelerates ICD
    • 

    corecore