180 research outputs found
Interplay among work function, electronic structure and stoichiometry in nanostructured VO: X films
The work function is the parameter of greatest interest in many technological applications involving charge exchange mechanisms at the surface. The possibility to produce samples with a controlled work function is then particularly interesting, albeit challenging. We synthetized nanostructured vanadium oxide films by a room temperature supersonic cluster beam deposition method, obtaining samples with tunable stoichiometry and work function (3.7-7 eV). We present an investigation of the electronic structure of several vanadium oxide films as a function of the oxygen content via in situ Auger, valence-band photoemission spectroscopy and work function measurements. The experiments probed the partial 3d density of states, highlighting the presence of strong V 3d-O 2p and V 3d-V 4s hybridizations which influence 3d occupation. We show how controlling the stoichiometry of the sample implies control over work function, and that the access to nanoscale quantum confinement can be exploited to increase the work function of the sample relative to the bulk analogue. In general, the knowledge of the interplay among work function, electronic structure, and stoichiometry is strategic to match nanostructured oxides to their target applications
Low-frequency modes in the Raman spectrum of sp-sp2 nanostructured carbon
A novel form of amorphous carbon with sp-sp2 hybridization has been recently
produced by supersonic cluster beam deposition showing the presence in the film
of both polyynic and cumulenic species [L. Ravagnan et al. Phys. Rev. Lett. 98,
216103 (2007)]. Here we present a in situ Raman characterization of the low
frequency vibrational region (400-800 cm-1) of sp-sp2 films at different
temperatures. We report the presence of two peaks at 450 cm-1 and 720 cm-1. The
lower frequency peak shows an evolution with the variation of the sp content
and it can be attributed, with the support of density functional theory (DFT)
simulations, to bending modes of sp linear structures. The peak at 720 cm-1
does not vary with the sp content and it can be attributed to a feature in the
vibrational density of states activated by the disorder of the sp2 phase.Comment: 15 pages, 5 figures, 1 tabl
Collective Autoionization in Multiply-Excited Systems: A novel ionization process observed in Helium Nanodroplets
Free electron lasers (FELs) offer the unprecedented capability to study
reaction dynamics and image the structure of complex systems. When multiple
photons are absorbed in complex systems, a plasma-like state is formed where
many atoms are ionized on a femtosecond timescale. If multiphoton absorption is
resonantly-enhanced, the system becomes electronically-excited prior to plasma
formation, with subsequent decay paths which have been scarcely investigated to
date. Here, we show using helium nanodroplets as an example that these systems
can decay by a new type of process, named collective autoionization. In
addition, we show that this process is surprisingly efficient, leading to ion
abundances much greater than that of direct single-photon ionization. This
novel collective ionization process is expected to be important in many other
complex systems, e.g. macromolecules and nanoparticles, exposed to high
intensity radiation fields
accessing the fractal dimension of free clusters in supersonic beams
In this paper a method for the quantitative determination of a morphology descriptor of free clusters with complex nanostructure is presented and applied to transition metal nanoparticles produced by a pulsed vaporization source. The method, which is based on the low-pressure aerodynamic mobility of neutral particles, can be applied as a characterization tool to a broad class of gas-phase nanoparticle sources for on-line investigation of particle growth and for quantifying coalescence versus agglomerate aggregation. We report on the application of this method for the characterization of free titanium clusters produced by a pulsed microplasma cluster source in the size range of approximately 300â6000âatoms. The clusters have an open fractal-like structure, with the fractal dimension depending on their thermal history during growth and evolving towards softer aggregates for longer residence times where lower-temperature conditions characterize the growth environment
Poly(methyl methacrylate) - Palladium clusters nanocomposite formation by supersonic cluster beam deposition: a method for microstructured metallization of polymer surfaces
Nanocomposite films were fabricated by supersonic cluster beam deposition
(SCBD) of palladium clusters on Poly(methyl methacrylate) (PMMA) surfaces. The
evolution of the electrical conductance with cluster coverage and microscopy
analysis show that Pd cluster are implanted in the polymer and form a
continuous layer extending for several tens of nanometers beneath the polymer
surface. This allows the deposition, using stencil masks, of cluster-assembled
Pd microstructures on PMMA showing a remarkably high adhesion compared to
metallic films obtained by thermal evaporation. These results suggest that SCBD
is a promising tool for the fabrication of metallic microstructures on flexible
polymeric substrates.Comment: 11 pages, 3 figure
core level spectroscopy of free titanium clusters in supersonic beams
Synchrotron radiation x-ray absorption spectroscopy (XAS) is one of the most powerful techniques to interrogate the local electronic structure and chemical status of bulk and nanostructured systems. The application of this technique to the study of size effects in free clusters of transition metal atoms would advance substantially fundamental knowledge of nano-objects and the tailoring of their magnetic and catalytic properties. To date core level spectroscopy of free transition metal clusters has been out of reach due to the lack of a cluster source able to produce clusters in the gas phase with a density suitable for synchrotron radiation sources. Here we demonstrate the XAS characterization of free titanium clusters in a supersonic molecular beam. We use a high-intensity cluster beam source coupled to a synchrotron beamline to investigate the size dependence of core level excitation of Tin clusters in the mass range 1
Ultrafast relaxation of photoexcited superfluid He nanodroplets
The relaxation of photoexcited nanosystems is a fundamental process of light-matter interaction. Depending on the couplings of the internal degrees of freedom, relaxation can be ultrafast, converting electronic energy in a few fs, or slow, if the energy is trapped in a metastable state that decouples from its environment. Here, we study helium nanodroplets excited resonantly by femtosecond extreme-ultraviolet (XUV) pulses from a seeded free- electron laser. Despite their superfluid nature, we find that helium nanodroplets in the lowest electronically excited states undergo ultrafast relaxation. By comparing experimental pho- toelectron spectra with time-dependent density functional theory simulations, we unravel the full relaxation pathway: Following an ultrafast interband transition, a void nanometer-sized bubble forms around the localized excitation (He ) within 1 ps. Subsequently, the bubble collapses and releases metastable He at the droplet surface. This study highlights the high level of detail achievable in probing the photodynamics of nanosystems using tunable XUV pulses
The first search for bosonic super-WIMPs with masses up to 1 MeV/c with GERDA
We present the first search for bosonic super-WIMPs as keV-scale dark matter
candidates performed with the GERDA experiment. GERDA is a neutrinoless
double-beta decay experiment which operates high-purity germanium detectors
enriched in Ge in an ultra-low background environment at the Laboratori
Nazionali del Gran Sasso (LNGS) of INFN in Italy. Searches were performed for
pseudoscalar and vector particles in the mass region from 60 keV/c to 1
MeV/c. No evidence for a dark matter signal was observed, and the most
stringent constraints on the couplings of super-WIMPs with masses above 120
keV/c have been set. As an example, at a mass of 150 keV/c the most
stringent direct limits on the dimensionless couplings of axion-like particles
and dark photons to electrons of and
at 90% credible interval,
respectively, were obtained.Comment: 6 pages, 3 figures, submitted to Physical Review Letters, added list
of authors, updated ref. [21
Recommended from our members
Diffraction imaging of light induced dynamics in xenon-doped helium nanodroplets
We explore the light induced dynamics in superfluid helium nanodroplets with wide-angle scattering in a pumpâprobe measurement scheme. The droplets are doped with xenon atoms to facilitate the ignition of a nanoplasma through irradiation with near-infrared laser pulses. After a variable time delay of up to 800 ps, we image the subsequent dynamics using intense extreme ultraviolet pulses from the FERMI free-electron laser. The recorded scattering images exhibit complex intensity fluctuations that are categorized based on their characteristic features. Systematic simulations of wide-angle diffraction patterns are performed, which can qualitatively explain the observed features by employing model shapes with both randomly distributed as well as structured, symmetric distortions. This points to a connection between the dynamics and the positions of the dopants in the droplets. In particular, the structured fluctuations might be governed by an underlying array of quantized vortices in the superfluid droplet as has been observed in previous small-angle diffraction experiments. Our results provide a basis for further investigations of dopantâdroplet interactions and associated heating mechanisms
Ultrafast resonant interatomic coulombic decay induced by quantum fluid dynamics
Interatomic processes play a crucial role in weakly bound complexes exposed to ionizing radiation; therefore, gaining a thorough understanding of their efficiency is of fundamental importance. Here, we directly measure the timescale of interatomic Coulombic decay (ICD) in resonantly excited helium nanodroplets using a high-resolution, tunable, extreme ultraviolet free-electron laser. Over an extensive range of droplet sizes and laser intensities, we discover the decay to be surprisingly fast, with decay times as short as 400 fs, nearly independent of the density of the excited states. Using a combination of time- dependent density functional theory and ab initio quantum chemistry calculations, we elucidate the mechanisms of this ultrafast decay process, where pairs of excited helium atoms in one droplet strongly attract each other and form merging void bubbles, which drastically accelerates ICD
- âŠ