7 research outputs found

    Walking-related digital mobility outcomes as clinical trial endpoint measures: protocol for a scoping review

    Get PDF
    Introduction Advances in wearable sensor technology now enable frequent, objective monitoring of real-world walking. Walking-related digital mobility outcomes (DMOs), such as real-world walking speed, have the potential to be more sensitive to mobility changes than traditional clinical assessments. However, it is not yet clear which DMOs are most suitable for formal validation. In this review, we will explore the evidence on discriminant ability, construct validity, prognostic value and responsiveness of walking-related DMOs in four disease areas: Parkinson’s disease, multiple sclerosis, chronic obstructive pulmonary disease and proximal femoral fracture. Methods and analysis Arksey and O’Malley’s methodological framework for scoping reviews will guide study conduct. We will search seven databases (Medline, CINAHL, Scopus, Web of Science, EMBASE, IEEE Digital Library and Cochrane Library) and grey literature for studies which (1) measure differences in DMOs between healthy and pathological walking, (2) assess relationships between DMOs and traditional clinical measures, (3) assess the prognostic value of DMOs and (4) use DMOs as endpoints in interventional clinical trials. Two reviewers will screen each abstract and full-text manuscript according to predefined eligibility criteria. We will then chart extracted data, map the literature, perform a narrative synthesis and identify gaps. Ethics and dissemination As this review is limited to publicly available materials, it does not require ethical approval. This work is part of Mobilise-D, an Innovative Medicines Initiative Joint Undertaking which aims to deliver, validate and obtain regulatory approval for DMOs. Results will be shared with the scientific community and general public in cooperation with the Mobilise-D communication team. Registration Study materials and updates will be made available through the Center for Open Science’s OSFRegistry (https://osf.io/k7395)

    Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device

    Get PDF
    This study aimed to validate a wearable device’s walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson’s Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and − 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application. Trial registration: ISRCTN – 12246987

    Estimating the false finding rate across scientific fields

    No full text
    The possiblity of large amounts of false positives within the scientific literature has gained significant attention, particular in light of several replication projects in which large proportions of published studies have failed to replicate. I show through simulation that low replication rates can occur even when the published literature contains mostly true (non-null) findings. Using conservative estimates of the proportion of true null hypotheses within published studies based on replications, I show that the results of recent replication projects are consistent with the possiblity that most published research is true

    Be–X-ray binaries and candidates

    No full text
    corecore