210 research outputs found

    The Penetration of Solar Radiation into Carbon Dioxide Ice

    Get PDF
    Icy surfaces behave differently to rocky or regolith‐covered surfaces in response to irradiation. A key factor is the ability of visible light to penetrate partially into the subsurface. This results in the Solid‐State Greenhouse Effect (SSGE), as ices can be transparent or translucent to visible and shorter wavelengths, whilst opaque in the infrared. This can lead to significant differences in shallow sub‐surface temperature profiles when compared to rocky surfaces. Of particular significance for modelling the SSGE is the e‐folding scale, otherwise known as the absorption scale length, or penetration depth, of the ice. Whilst there have been measurements for water ice and snow, pure and with mixtures, to date there have been no such measurements published for carbon dioxide ice. After an extensive series of measurements we are able to constrain the e‐folding scale of CO2 ice for the cumulative wavelength range 300 nm to 1100 nm, which is a vital parameter in heat transfer models for the Martian surface, enabling us to better understand surface‐atmosphere interactions at Mars’ polar caps

    ThĂ©Ăątre et cĂ©ramique d’Italie mĂ©ridionale et de Sicile : de nouvelles perspectives

    Get PDF
    Les rapports entre littĂ©rature et cĂ©ramique ont fait ces derniĂšres dĂ©cennies l’objet d’intenses rĂ©flexions, qui ont abouti Ă  la reconnaissance de l’autonomie de ces deux arts, mais malheureusement bien souvent aussi Ă  leur traitement sĂ©parĂ© de la part de savants spĂ©cialisĂ©s en philologie ou en histoire de l’art. Le thĂ©Ăątre grec, art visuel tout autant que rhĂ©torique, a souffert plus qu’aucun autre genre de ce cloisonnement. Dans ce contexte, le trĂšs beau livre d’Oliver Taplin, Pots and Plays,..

    Planetary heat flow from shallow subsurface measurements: Mars

    Get PDF
    Planetary heat flow probes measure heat flow (depth-resolved temperature and thermal conductivity) to provide insight into the internal state of a planet. The probes have been utilized extensively on Earth, twice on the Moon, and once on the Surface of comet 67P-CG. Mars is an important target for heat flow measurement as heat flow is a critical parameter in Martian thermal history models. Earlier studies indicate that Martian planetary heat flow can be accessed at 5 m below the surface in dry regolith monitored over at least one Martian year. A one Martian year monitoring period is necessary because, in the shallow subsurface, heat flow from the interior is superposed with time varying heat flow contributions, primarily due to insolation. Given that a heat flow probe may not achieve its target depth or monitoring period, this study investigates how the depth (2–5 m), duration (0–1 Martian year) and quality of measurements influence the accuracy of planetary heat flow. An inverse model is used to show that, in the preceding scenarios, the accuracy of planetary heat flow directly estimated from depth-dependent thermal conductivity with 10–20% precision errors, temperatures with 50–100 mK precision errors and modelling uncertainties up to 500 mK, can, on average, be improved by a factor of 27 with optimization to 13%. Accuracies increase with sensor penetration depth and regolith monitoring period. Heat flow optimized from instantaneous measurements or those with the shortest regolith monitoring periods have increased accuracy where the frequency and amplitude of the temperature variation are lowest. The inverse model is based on the Function Specification Inversion method. This study demonstrates that a solution subspace can be identified within a space of uncertainties modelled for the temperature measurements and planetary heat flow: the subspace is defined by a constant log-ratio of their respective standard deviations. Optimized heat flow estimates display reduced correlation with increasing temperature precision and systematic conductivity errors, with the constraint of other known model parameters. Consequently, the model permits upper bounds to be placed on the conductivity estimate without conductivity optimization, as heat flows are optimized to a limiting value with increasing systematic conductivity errors for any given parameter set. Overall, the results demonstrate a 52% chance of achieving a direct heat flow estimate accurate to within 40%, with the same being 82% after optimization

    Experimental investigation of insolation-driven dust ejection from Mars’ CO2 ice caps

    Get PDF
    Mars’ polar caps are – depending on hemisphere and season - partially or totally covered with CO2 ice. Icy surfaces such as the polar caps of Mars behave differently from surfaces covered with rock and soil when they are irradiated by solar light. The latter absorb and reflect incoming solar radiation within a thin layer beneath the surface. In contrast, ices are partially transparent in the visible spectral range and opaque in the infrared. Due to this fact, the solar radiation can penetrate to a certain depth and raise the temperature of the ice or dust below the surface. This may play an important role in the energy balance of icy surfaces in the solar system, as already noted in previous investigations. We investigated the temperature profiles inside CO2 ice samples including a dust layer under Martian conditions. We have been able to trigger dust eruptions, but also demonstrated that these require a very narrow range of temperature and ambient pressure. We discuss possible implications for the understanding of phenomena such as arachneiform patterns or fan shaped deposits as observed in Mars’ southern polar region

    Martian Araneiforms: A Review

    Get PDF
    Araneiforms are enigmatic dendritic negative topography features native to Mars. Found across a variety of substrates and exhibiting a range of scales, morphologies, and activity level, they are hypothesized to form via insolation-induced basal sublimation of seasonal CO2 ice. With no direct Earth analog, araneiforms are an example of how our understanding of extant surface features can evolve through a multipronged approach using high resolution change-detection imaging, conceptual and numerical modeling, and analog laboratory work. This review offers a primer on the current state of knowledge of Martian araneiforms. We outline the development of their driving conceptual hypothesis and the various methodologies used to study their formation. We furthermore present open questions and identify future laboratory and modeling work and mission objectives that may address these questions. Finally, this review highlights how the study of araneiforms may be used as a proxy for local conditions and perhaps even past seasonal dynamics on Mars. We also reflect on the lessons learnt from studying them and opportunities for comparative planetology that can be harnessed in understanding unusual features on icy worlds that have no Earth analog

    Mass wasting triggered by seasonal CO<sub>2</sub> sublimation under Martian atmospheric conditions: Laboratory experiments

    Get PDF
    Sublimation is a recognized process by which planetary landscapes can be modiïŹed. However, interpretation of whether sublimation is involved in downslope movements on Mars and other bodies is restricted by a lack of empirical data to constrain this mechanism of sediment transport and its inïŹ‚uence on landform morphology. Here we present the ïŹrst set of laboratory experiments under Martian atmospheric conditions which demonstrate that the sublimation of CO2 ice from within the sediment body can trigger failure of unconsolidated, regolith slopes and can measurably alter the landscape. Previous theoretical studies required CO2 slab ice for movements, but we ïŹnd that only frost is required. Hence, sediment transport by CO2 sublimation could be more widely applicable (in space and time) on Mars than previously thought. This supports recent work suggesting CO2 sublimation could be responsible for recent modiïŹcation in Martian gullies

    Water ice in the dark dune spots of Richardson crater on Mars

    Full text link
    In this study we assess the presence, nature and properties of ices - in particular water ice - that occur within these spots using HIRISE and CRISM observations, as well as the LMD Global Climate Model. Our studies focus on Richardson crater (72{\deg}S, 179{\deg}E) and cover southern spring and summer (LS 175{\deg} - 17 341{\deg}). Three units have been identified of these spots: dark core, gray ring and bright halo. Each unit show characteristic changes as the season progress. In winter, the whole area is covered by CO2 ice with H2O ice contamination. Dark spots form during late winter and early spring. During spring, the dark spots are located in a 10 cm thick depression compared to the surrounding bright ice-rich layer. They are spectrally characterized by weak CO2 ice signatures that probably result from spatial mixing of CO2 ice rich and ice free regions within pixels, and from mixing of surface signatures due to aerosols scattering. The bright halo shaped by winds shows stronger CO2 absorptions than the average ice covered terrain, which is consistent with a formation process involving CO2 re-condensation. According to spectral, morphological and modeling considerations, the gray ring is composed of a thin layer of a few tens of {\mu}m of water ice. Two sources/processes could participate to the enrichment of water ice in the gray ring unit: (i) water ice condensation at the surface in early fall (prior to the condensation of a CO2 rich winter layer) or during winter time (due to cold trapping of the CO2 layer); (ii) ejection of dust grains surrounded by water ice by the geyser activity responsible for the dark spot. In any case, water ice remains longer in the gray ring unit after the complete sublimation of the CO2. Finally, we also looked for liquid water in the near-IR CRISM spectra using linear unmixing modeling but found no conclusive evidence for it

    The Holy Grail: A road map for unlocking the climate record stored within Mars' polar layered deposits

    Get PDF
    In its polar layered deposits (PLD), Mars possesses a record of its recent climate, analogous to terrestrial ice sheets containing climate records on Earth. Each PLD is greater than 2 ​km thick and contains thousands of layers, each containing information on the climatic and atmospheric state during its deposition, creating a climate archive. With detailed measurements of layer composition, it may be possible to extract age, accumulation rates, atmospheric conditions, and surface activity at the time of deposition, among other important parameters; gaining the information would allow us to “read” the climate record. Because Mars has fewer complicating factors than Earth (e.g. oceans, biology, and human-modified climate), the planet offers a unique opportunity to study the history of a terrestrial planet’s climate, which in turn can teach us about our own planet and the thousands of terrestrial exoplanets waiting to be discovered. During a two-part workshop, the Keck Institute for Space Studies (KISS) hosted 38 Mars scientists and engineers who focused on determining the measurements needed to extract the climate record contained in the PLD. The group converged on four fundamental questions that must be answered with the goal of interpreting the climate record and finding its history based on the climate drivers. The group then proposed numerous measurements in order to answer these questions and detailed a sequence of missions and architecture to complete the measurements. In all, several missions are required, including an orbiter that can characterize the present climate and volatile reservoirs; a static reconnaissance lander capable of characterizing near surface atmospheric processes, annual accumulation, surface properties, and layer formation mechanism in the upper 50 ​cm of the PLD; a network of SmallSat landers focused on meteorology for ground truth of the low-altitude orbiter data; and finally, a second landed platform to access ~500 ​m of layers to measure layer variability through time. This mission architecture, with two landers, would meet the science goals and is designed to save costs compared to a single very capable landed mission. The rationale for this plan is presented below. In this paper we discuss numerous aspects, including our motivation, background of polar science, the climate science that drives polar layer formation, modeling of the atmosphere and climate to create hypotheses for what the layers mean, and terrestrial analogs to climatological studies. Finally, we present a list of measurements and missions required to answer the four major questions and read the climate record. 1. What are present and past fluxes of volatiles, dust, and other materials into and out of the polar regions? 2. How do orbital forcing and exchange with other reservoirs affect those fluxes? 3. What chemical and physical processes form and modify layers? 4. What is the timespan, completeness, and temporal resolution of the climate history recorded in the PLD
    • 

    corecore