7 research outputs found

    The Herschel Digit Survey Of Weak-Line T Tauri Stars: Implications For Disk Evolution And Dissipation

    Get PDF
    As part of the "Dust, Ice, and Gas In Time (DIGIT)" Herschel Open Time Key Program, we present Herschel photometry (at 70, 160, 250, 350, and 500 mu m) of 31 weak-line T Tauri star (WTTS) candidates in order to investigate the evolutionary status of their circumstellar disks. Of the stars in our sample, 13 had circumstellar disks previously known from infrared observations at shorter wavelengths, while 18 of them had no previous evidence for a disk. We detect a total of 15 disks as all previously known disks are detected at one or more Herschel wavelengths and two additional disks are identified for the first time. The spectral energy distributions (SEDs) of our targets seem to trace the dissipation of the primordial disk and the transition to the debris disk regime. Of the 15 disks, 7 appear to be optically thick primordial disks, including 2 objects with SEDs indistinguishable from those of typical Classical T Tauri stars, 4 objects that have significant deficit of excess emission at all IR wavelengths, and 1 "pre-transitional" object with a known gap in the disk. Despite their previous WTTS classification, we find that the seven targets in our sample with optically thick disks show evidence for accretion. The remaining eight disks have weaker IR excesses similar to those of optically thin debris disks. Six of them are warm and show significant 24 mu m Spitzer excesses, while the last two are newly identified cold debris-like disks with photospheric 24 mu m fluxes, but significant excess emission at longer wavelengths. The Herschel photometry also places strong constraints on the non-detections, where systems with F-70/F-70,(*) greater than or similar to 5-15 and L-disk/L-* greater than or similar to 10(-3) to 10(-4) can be ruled out. We present preliminary models for both the optically thick and optically thin disks and discuss our results in the context of the evolution and dissipation of circumstellar disks.NASA through JPL/CaltechNASA through the Sagan Fellowship ProgramEuropean Commission PERG06-GA-2009-256513Agence Nationale pour la Recherche (ANR) of France ANR-2010-JCJC-0504-01CFHT 11AH96Astronom

    A Herschel Survey Of Cold Dust In Disks Around Brown Dwarfs And Low-Mass Stars

    No full text
    We report the complete photometric results from our Herschel study which is the first comprehensive program to search for far-infrared emission from cold dust around young brown dwarfs (BDs). We surveyed 50 fields containing 51 known or suspected BDs and very low mass stars that have evidence of circumstellar disks based on Spitzer photometry and/or spectroscopy. The objects with known spectral types range from M3 to M9.5. Four of the candidates were subsequently identified as extragalactic objects. Of the remaining 47 we have successfully detected 36 at 70 mu m and 14 at 160 mu m with signal-to-noise ratio (S/N) greater than 3, as well as several additional possible detections with low S/N. The objects exhibit a range of [24]-[70] mu m colors suggesting a range in mass and/or structure of the outer disk. We present modeling of the spectral energy distributions of the sample and discuss trends visible in the data. Using two Monte Carlo radiative transfer codes we investigate disk masses and geometry. We find a very wide range in modeled total disk masses from less than 10(-6) M-circle dot up to 10(-3) M-circle dot with a median disk mass of the order of 3 x 10(-5) M-circle dot, suggesting that the median ratio of disk mass to central object mass may be lower than for T Tauri stars. The disk scale heights and flaring angles, however, cover a range consistent with those seen around T Tauri stars. The host clouds in which the young BDs and low-mass stars are located span a range in estimated age from similar to 1-3 Myr to similar to 10 Myr and represent a variety of star-forming environments. No obvious dependence on cloud location or age is seen in the disk properties, though the statistical significance of this conclusion is not strong.NASA through Jet Propulsion Laboratory, California Institute of Technology to the University of TexasNASAANR ANR-07-BLAN-0221, ANR-2010-JCJC-0504-01European Commission PERG06-GA-2009-256513, CT920791, CT940627CNRS/INSU, FranceGerman Research Foundation FOR 759German Academic Exchange ServiceINSU in FranceMEN in FranceCNRS in FranceState of Baden-Wurttemberg in GermanyDGICYT in SpainCNR in ItalyFFwF-BWF in AustriaFAPESP in BrazilOTKA in Hungary F-4239, F-013990ESO CEE A-04-046Astronom

    Diet consistency but large-scale isotopic variations in a deep-sea shark: The case of the velvet belly lantern shark, Etmopterus spinax, in the northeastern Atlantic region and Mediterranean Sea

    No full text
    Deep-sea elasmobranchs are commonly reported as bycatch of deep-sea fisheries and their subsequent loss has been highlighted as a long-running concern to the ecosystem ecological functioning. To understand the possible consequences of their removal, information on basic ecological traits, such as diet and foraging strategies, is needed. Such aspects have been widely studied through stomach content analysis but the lack of long-term dietary information requires other tools to be used such as stable isotopes. This study examines nitrogen and carbon isotope compositions of the velvet belly lantern shark, Etmopterus spinax, one of the most impacted shark species in Northeastern Atlantic fisheries as a result of accidental catches. E. spinax was sampled at four different locations, characterized by contrasting oceanographic and ecological conditions: the western Mediterranean Sea (near the Balearic Islands), the southern Iberian upwelling system, Rockall Trough and southwestern Norwegian fjords. Stomach content analysis revealed similar prey species among sites, with a diet dominated by Euphausiacea (mostly Meganyctiphanes norvegica) and an ontogenetic shift towards small teleost fishes, cephalopods or other crustaceans. Despite these similarities, muscle stable isotope compositions differed across sampled locations. Rather than clear dietary differences, the contrasted isotopic values are likely to reflect differences in environmental settings and biogeochemical processes affecting nutrient dynamics at the base of the food webs

    Diet consistency but large-scale isotopic variations in a deep-sea shark: The case of the velvet belly lantern shark, Etmopterus spinax, in the northeastern Atlantic region and Mediterranean Sea

    Full text link
    peer reviewedDeep-sea elasmobranchs are commonly reported as bycatch of deep-sea fisheries and their subsequent loss has been highlighted as a long-running concern to the ecosystem ecological functioning. To understand the possible consequences of their removal, information on basic ecological traits, such as diet and foraging strategies, is needed. Such aspects have been widely studied through stomach content analysis but the lack of long-term dietary information requires other tools to be used such as stable isotopes. This study examines nitrogen and carbon isotope compositions of the velvet belly lantern shark, Etmopterus spinax, one of the most impacted shark species in northeastern Atlantic fisheries as a result of accidental catches. E. spinax was sampled at four different locations, characterized by contrasting oceanographic and ecological conditions: the western Mediterranean Sea (near the Balearic Islands), the southern Iberian upwelling system, Rockall Trough and southwestern Norwegian fjords. Stomach content analysis revealed similar prey species among sites, with a diet dominated by Euphausiacea (mostly Meganyctiphanes norvegica) and an ontogenetic shift towards small teleost fishes, cephalopods or other crustaceans. Despite these similarities, muscle stable isotope compositions differed across sampled locations. Rather than clear dietary differences, the contrasted isotopic values are likely to reflect differences in environmental settings and biogeochemical processes affecting nutrient dynamics at the base of the food webs

    Scipy Lecture Notes: One document to learn numerics, science, and data with Python

    Get PDF
    International audienceTutorials on the scientific Python ecosystem: a quick introduction to central tools and techniques. The different chapters each correspond to a 1 to 2 hours course with increasing level of expertise, from beginner to expert

    An Exo-Kuiper Belt with An Extended Halo around HD 191089 in Scattered Light

    Get PDF
    International audienceWe have obtained Hubble Space Telescope (HST) STIS and NICMOS, and Gemini/GPI scattered light images of the HD 191089 debris disk. We identify two spatial components: a ring resembling Kuiper Belt in radial extent (FWHM: ∼25 au, centered at ∼46 au), and a halo extending to ∼640 au. We find that the halo is significantly bluer than the ring, consistent with the scenario that the ring serves as the "birth ring" for the smaller dust in the halo. We measure the scattering phase functions in the 30 •-150 • scattering angle range and find the halo dust is both more forward-and backward-scattering than the ring dust. We measure a surface density power law index of −0.68 ± 0.04 for the halo, which indicates the slowdown of the radial outward motion of the dust. Using radiative transfer modeling, we attempt to simultaneously reproduce the (visible) total and (near-infrared) polarized intensity images of the birth ring. Our modeling leads to mutually inconsistent results, indicating that more complex models, such as the inclusion of more realistic aggregate particles, are needed

    IASIL Bibliography for 2011

    No full text
    corecore