280 research outputs found

    Structured fibrous carbon-based catalyst for continuous nitrate removal from natural water

    Full text link
    [EN] Bimetallic (Pd–Cu, Pd–Sn) nanoparticles supported on structured fibrous carbons (activated carbon fibers and carbon nanofibers grown on sintered metal fibers) were tested in nitrate removal of natural polluted water by hydrogen (a batch and continuous mode). Dependence of the activity/selectivity on catalyst chemical composition, promoter nature and metal particle size was studied. Sn-modified Pd nanoparticles showed higher N2 selectivity as compared to Cu-modified ones. The structured (Pd–Sn) nanoparticles supported on carbon nanofibers grown on Inconel sintered metal fibers demonstrated the best catalytic performance in an open flow reactor, providing optimal hydrodynamics properties.This work was carried out with the financial support of the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 226347.Yuranova, T.; Franch Martí, C.; Palomares Gimeno, AE.; García-Bordejé, E.; Kiwi-Minsker, L. (2012). Structured fibrous carbon-based catalyst for continuous nitrate removal from natural water. Applied Catalysis B: Environmental. 123-124:221-228. https://doi.org/10.1016/j.apcatb.2012.04.007S221228123-12

    Biomechanical experimental data curation: an example for main lumbar spine ligaments characterization for a MBS spine model

    Get PDF
    Series : Mechanisms and machine science, ISSN 2211-0984, vol. 24This work overviews an extensive analysis in the context of mechanical characterization of human biomaterials, carried out over a broad set of published experimental data. Focused on main lumbar spine ligaments, several test procedures are exhaustively analyzed, in order to identify possible causes for divergences that have been found in some results. Moreover, guidelines are proposed for da-ta filtering and selection. The main objective of the task was to retrieve trustworthy inputs to a hybrid Finite Element Analysis / Multibody System dynamic simulation model of the human intervertebral disc, which can be used on the prediction of nucleus prosthetics working performance

    The use of Pd catalysts on carbon-based structured materials for the catalytic hydrogenation of bromates in different types of water

    Get PDF
    [EN] The aim of this work is to study the activity of new Pd catalysts, supported on two different nano structured carbon materials, for bromate catalytic hydrogenation. The influence of the support has been studied, obtaining the best results with a palladium catalyst supported on carbon nanofibers (CNF) grown in sintered metal fibers (SMF). The results have shown the importance of the catalyst support in order to minimize the mass-transfer limitations ensuring an efficient catalyst use. In this way the most active catalysts are those with a mesoporous structure containing high dispersed Pd nanoparticles. The activity of this catalyst for bromate reduction has been tested in different types of water, namely, distilled water, natural water and industrial wastewater. It has been shown that the catalyst activity depends on the water matrix and bromate reduction rate depends on the hydrogen partial pressure. The potential use of the catalyst has been studied in a continuous reactor. It has been observed that the catalyst is active without any important deactivation at least during 100 h of reaction, but is necessary to avoid salt precipitation and plugging problems.The authors thank the European Union (European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement no. 226347 Project) for financial support. A.E. Palomares also acknowledges the support from the Spanish Government through the project MAT2012-38567-C02-01.Palomares Gimeno, AE.; Franch MartĂ­, C.; Yuranova, T.; Kiwi-Minsker, L.; Garcia Bordeje, JE.; Derrouiche, S. (2014). The use of Pd catalysts on carbon-based structured materials for the catalytic hydrogenation of bromates in different types of water. Applied Catalysis B: Environmental. 146:186-191. https://doi.org/10.1016/j.apcatb.2013.02.056S18619114

    HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate prediction of binding residues involved in the interactions between proteins and small ligands is one of the major challenges in structural bioinformatics. Heme is an essential and commonly used ligand that plays critical roles in electron transfer, catalysis, signal transduction and gene expression. Although much effort has been devoted to the development of various generic algorithms for ligand binding site prediction over the last decade, no algorithm has been specifically designed to complement experimental techniques for identification of heme binding residues. Consequently, an urgent need is to develop a computational method for recognizing these important residues.</p> <p>Results</p> <p>Here we introduced an efficient algorithm HemeBIND for predicting heme binding residues by integrating structural and sequence information. We systematically investigated the characteristics of binding interfaces based on a non-redundant dataset of heme-protein complexes. It was found that several sequence and structural attributes such as evolutionary conservation, solvent accessibility, depth and protrusion clearly illustrate the differences between heme binding and non-binding residues. These features can then be separately used or combined to build the structure-based classifiers using support vector machine (SVM). The results showed that the information contained in these features is largely complementary and their combination achieved the best performance. To further improve the performance, an attempt has been made to develop a post-processing procedure to reduce the number of false positives. In addition, we built a sequence-based classifier based on SVM and sequence profile as an alternative when only sequence information can be used. Finally, we employed a voting method to combine the outputs of structure-based and sequence-based classifiers, which demonstrated remarkably better performance than the individual classifier alone.</p> <p>Conclusions</p> <p>HemeBIND is the first specialized algorithm used to predict binding residues in protein structures for heme ligands. Extensive experiments indicated that both the structure-based and sequence-based methods have effectively identified heme binding residues while the complementary relationship between them can result in a significant improvement in prediction performance. The value of our method is highlighted through the development of HemeBIND web server that is freely accessible at <url>http://mleg.cse.sc.edu/hemeBIND/</url>.</p

    Prodepth: Predict Residue Depth by Support Vector Regression Approach from Protein Sequences Only

    Get PDF
    Residue depth (RD) is a solvent exposure measure that complements the information provided by conventional accessible surface area (ASA) and describes to what extent a residue is buried in the protein structure space. Previous studies have established that RD is correlated with several protein properties, such as protein stability, residue conservation and amino acid types. Accurate prediction of RD has many potentially important applications in the field of structural bioinformatics, for example, facilitating the identification of functionally important residues, or residues in the folding nucleus, or enzyme active sites from sequence information. In this work, we introduce an efficient approach that uses support vector regression to quantify the relationship between RD and protein sequence. We systematically investigated eight different sequence encoding schemes including both local and global sequence characteristics and examined their respective prediction performances. For the objective evaluation of our approach, we used 5-fold cross-validation to assess the prediction accuracies and showed that the overall best performance could be achieved with a correlation coefficient (CC) of 0.71 between the observed and predicted RD values and a root mean square error (RMSE) of 1.74, after incorporating the relevant multiple sequence features. The results suggest that residue depth could be reliably predicted solely from protein primary sequences: local sequence environments are the major determinants, while global sequence features could influence the prediction performance marginally. We highlight two examples as a comparison in order to illustrate the applicability of this approach. We also discuss the potential implications of this new structural parameter in the field of protein structure prediction and homology modeling. This method might prove to be a powerful tool for sequence analysis

    Aquatic Bacterial Communities Associated With Land Use and Environmental Factors in Agricultural Landscapes Using a Metabarcoding Approach

    Get PDF
    This study applied a 16S rRNA gene metabarcoding approach to characterize bacterial community compositional and functional attributes for surface water samples collected within, primarily, agriculturally dominated watersheds in Ontario and Québec, Canada. Compositional heterogeneity was best explained by stream order, season, and watercourse discharge. Generally, community diversity was higher at agriculturally dominated lower order streams, compared to larger stream order systems such as small to large rivers. However, during times of lower relative water flow and cumulative 2-day rainfall, modestly higher relative diversity was found in the larger watercourses. Bacterial community assemblages were more sensitive to environmental/land use changes in the smaller watercourses, relative to small-to-large river systems, where the proximity of the sampled water column to bacteria reservoirs in the sediments and adjacent terrestrial environment was greater. Stream discharge was the environmental variable most significantly correlated (all positive) with bacterial functional groups, such as C/N cycling and plant pathogens. Comparison of the community structural similarity via network analyses helped to discriminate sources of bacteria in freshwater derived from, for example, wastewater treatment plant effluent and intensity and type of agricultural land uses (e.g., intensive swine production vs. dairy dominated cash/livestock cropping systems). When using metabarcoding approaches, bacterial community composition and coexisting pattern rather than individual taxonomic lineages, were better indicators of environmental/land use conditions (e.g., upstream land use) and bacterial sources in watershed settings. Overall, monitoring changes and differences in aquatic microbial communities at regional and local watershed scales has promise for enhancing environmental footprinting and for better understanding nutrient cycling and ecological function of aquatic systems impacted by a multitude of stressors and land uses

    WSES-AAST guidelines: management of inflammatory bowel disease in the emergency setting

    Get PDF
    Background Despite the current therapeutic options for the treatment of inflammatory bowel disease, surgery is still frequently required in the emergency setting, although the number of cases performed seems to have decreased in recent years. The World Society of Emergency Surgery decided to debate in a consensus conference of experts, the main pertinent issues around the management of inflammatory bowel disease in the emergent situation, with the need to provide focused guidelines for acute care and emergency surgeons. Method A group of experienced surgeons and gastroenterologists were nominated to develop the topics assigned and answer the questions addressed by the Steering Committee of the project. Each expert followed a precise analysis and grading of the studies selected for review. Statements and recommendations were discussed and voted at the Consensus Conference of the 6th World Society of Emergency Surgery held in Nijmegen (The Netherlands) in June 2019. Conclusions Complicated inflammatory bowel disease requires a multidisciplinary approach because of the complexity of this patient group and disease spectrum in the emergency setting, with the aim of obtaining safe surgery with good functional outcomes and a decreasing stoma rate where appropriate.Peer reviewe

    Biomechanical analysis of the lumbar spine on facet joint force and intradiscal pressure - a finite element study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Finite element analysis results will show significant differences if the model used is performed under various material properties, geometries, loading modes or other conditions. This study adopted an FE model, taking into account the possible asymmetry inherently existing in the spine with respect to the sagittal plane, with a more geometrically realistic outline to analyze and compare the biomechanical behaviour of the lumbar spine with regard to the facet force and intradiscal pressure, which are associated with low back pain symptoms and other spinal disorders. Dealing carefully with the contact surfaces of the facet joints at various levels of the lumbar spine can potentially help us further ascertain physiological behaviour concerning the frictional effects of facet joints under separate loadings or the responses to the compressive loads in the discs.</p> <p>Methods</p> <p>A lumbar spine model was constructed from processes including smoothing the bony outline of each scan image, stacking the boundary lines into a smooth surface model, and subsequent further processing in order to conform with the purpose of effective finite element analysis performance. For simplicity, most spinal components were modelled as isotropic and linear materials with the exception of spinal ligaments (bilinear). The contact behaviour of the facet joints and changes of the intradiscal pressure with different postures were analyzed.</p> <p>Results</p> <p>The results revealed that asymmetric responses of the facet joint forces exist in various postures and that such effect is amplified with larger loadings. In axial rotation, the facet joint forces were relatively larger in the contralateral facet joints than in the ipsilateral ones at the same level. Although the effect of the preloads on facet joint forces was not apparent, intradiscal pressure did increase with preload, and its magnitude increased more markedly in flexion than in extension and axial rotation.</p> <p>Conclusions</p> <p>Disc pressures showed a significant increase with preload and changed more noticeably in flexion than in extension or in axial rotation. Compared with the applied preloads, the postures played a more important role, especially in axial rotation; the facet joint forces were increased in the contralateral facet joints as compared to the ipsilateral ones at the same level of the lumbar spine.</p
    • …
    corecore