258 research outputs found

    Eutectic mixtures based on polyalcohols as sustainable solvents: screening and characterization

    Get PDF
    Despite some promising potential applications of eutectic systems containing choline chloride ([Ch]Cl) and a polyalcohol, a detailed investigation of the thermodynamic behavior of these systems is still missing. In this work, the solid-liquid equilibria phase diagrams of binary systems containing [Ch]Cl and one from six different polyalcohols (ethylene glycol (EG), 1,3-propanediol, glycerol (Gly), meso-erythritol, xylitol, and sorbitol) were measured in the full composition. Except for the mixtures with Gly or EG, a quasi-ideal behavior in the [Ch]Cl solubility curve is observed. In the polyalcohol solubility curve, the mixtures present small negative deviations from ideality, except for [Ch]Cl + EG, which is slightly positive. The solid-liquid phase diagrams show a large liquid composition window, and not a fixed stoichiometry for the eutectic points, where the mixtures can be used as solvents close to, or below, room temperature. Aiming at their application, viscosities and densities were measured at the eutectic point in the temperature range from 278.15 to 373.15 K. All systems present densities and viscosities higher than water, which is directly related to the strong interactions between the components. Solvatochromic parameters were measured to characterize the solvents, and they show that solvent tunability can be achieved by varying the polyalcohol mole fraction.This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, and CIMO-Mountain Research Center, UIDB/00690/2020, both financed by national funds through the Portuguese Foundation for Science and Technology/MCTES. The NMR spectrometers are part of the National NMR Network (PTNMR) and are partially supported by Infrastructure Project Nº 022161 (cofinanced by FEDER through COMPETE 2020, POCI and PORL and FCT through PIDDAC). L.P.S. acknowledges FCT for her PhD grant (SFRH/BD/135976/2018).info:eu-repo/semantics/publishedVersio

    Blind Prediction Tests as a Benchmark to Improve the Seismic Response of Fibre Models

    Get PDF
    The seismic behaviour of reinforced concrete framed structures involves a number of nonlinear material and geometrical phenomena that are impossible to model exhaustively in a single model. Furthermore, past studies showed that the most correct modelling options from the scientific viewpoint are sometimes challenged by experimental results. Over the years, attempts have been made to identify and measure the importance of different modelling options. This work intends to consolidate some of these findings and further extend them in order to progressively bridge the gap between solidly established theoretical principles and shaking table test results. The response of three different structures used in international blind prediction test challenges serves as benchmark to assess the goodness-of-fit of alternative numerical solutions. The interpretation of the results highlights the sensitivity of the response with respect to the modelling choices and provides indications towards the development of optimized numerical analyses.N/

    A Fibre-Based Frame Element with Explicit Consideration of Bond-Slip Effects

    Get PDF
    Reinforced concrete (RC) frames subjected to seismic loading often depict localized member-end deformations due to strain penetration effects between adjacent members, such as beam-column and column-footing joints. Past experimental programs indicate that the bond-slip deformations occurring at the interface between the reinforcement and the surrounding concrete can contribute up to 40% of the lateral deformation of the RC members. The employment of advanced bond-slip models within detailed finite element formulations, capable of simulating continuous domains with highly discretized meshes, has witnessed great advances over the recent years with encouraging results. Nonetheless, this modelling approach is computationally heavy and hence inapplicable for practical seismic (nonlinear) analysis of structures. Alternatively, the use of beam-column elements with lumped or distributed plasticity is a more computationally efficient and engineering-friendly modelling approach. Unfortunately, the elements of this type available in conventional numerical packages did not yet consider an explicit simulation of the interface between the reinforcing bars and the surrounding concrete along their embedment length. The present study aimed at overcoming the foregoing limitation by developing an explicit bond-slip model applicable to general fibre-based beam-column elements. Using a state-of-the-art bond-slip constitutive model, the current paper introduces a zero-length element that computes the localized member-end deformations accounting for the bond-slip response at each reinforcing bar of a given RC section. Along with the material properties and anchorage conditions, the proposed nonlinear model also accounts for cyclic degradation and rebar yielding effects. Validation studies conducted with the proposed numerical formulation reveal a good agreement with past experimental tests, evidencing an important stability and accuracy at the expense of an acceptable additional computational effort.info:eu-repo/semantics/publishedVersio

    Solid-liquid phase behavior of eutectic solvents containing sugar alcohols

    Get PDF
    Mixtures of carbohydrates are often reported in the literature as deep eutectic solvents yet, in most cases, their solid–liquid phase diagrams are poorly characterized and no evidence is available to validate this classification. In this work, the phase diagrams of the binary systems composed of the sugar alcohols mannitol or maltitol and meso-erythritol, xylitol, or sorbitol, were experimentally determined. The results obtained reveal that these systems have a thermodynamic ideal behavior, questioning their classification as deep eutectic solvents and showing that intermolecular hydrogen bonding between the components of a mixture is not a sufficient condition to prepare deep eutectic solvents. The phase diagrams of the systems composed of mannitol or maltitol and cholinium chloride were also measured in this work. In sharp contrast to the mixtures composed solely by sugar alcohols, and unlike numerous other choline-based eutectic systems reported in the literature, these systems revealed significant deviations to thermodynamic ideality, leading to significant melting temperature depressions. The Cl-OH interaction between cholinium chloride and the sugar alcohols is identified as the main reason for these deviations to ideality, paving the way for the rational choice of hydrogen bond acceptors to prepare deep eutectic solvents.This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, and CIMO-Mountain Research Center, UIDB/00690/2020, both financed by national funds through the Portuguese Foundation for Science and Technology(FCT)/MCTES. L.P.S. acknowledges FCT for her PhD grant (SFRH/BD/135976/2018).info:eu-repo/semantics/publishedVersio

    EzrA Contributes to the Regulation of Cell Size in Staphylococcus aureus

    Get PDF
    EzrA is a negative regulator of FtsZ in Bacillus subtilis, involved in the coordination between cell growth and cell division and in the control of the cell elongation–division cycle. We have now studied the role of the Staphylococcus aureus homologue of the B. subtilis EzrA protein and shown that it is not essential for cell viability. EzrA conditional and null mutants have an overall increase of the average cell size, compared to wild type strains. In the larger ezrA mutant S. aureus cells, cell division protein FtsZ and the cell wall synthesizing Penicillin Binding Proteins (PBPs) are not properly localized. This suggests that there may be a maximum cell diameter that allows formation of a Z-ring capable of recruiting the other components of the divisome and of driving cytokinesis. We propose that the major role of EzrA in S. aureus is in cell size homeostasis

    Tetraalkylammonium Chlorides as Melting Point Depressants of Ionic Liquids

    Get PDF
    With the (re)advent of eutectic mixtures within the field of deep eutectic solvents, special attention has been given to the measurement of solid–liquid equilibrium (SLE) phase diagrams, supported by the relevant information they can provide on the molecular interactions and melting temperature depression of any given system. As such, this work investigates the SLE phase diagrams of mixtures between ionic liquids and tetraalkylammonium chlorides (methyl, ethyl, and propyl), with the goal of decreasing the melting temperature of ionic liquids and ammonium salts, thus, expanding their application scope. Results show that tetraalkylammonium salts exhibit negative deviations from thermodynamic ideality when mixed with ionic liquids, which are increased by increasing their alkyl chain length and are interpreted in terms of anion exchange mechanisms. In turn, this nonideality contributes greatly to depression of the melting point of the ionic liquids examined. Overall, this work demonstrates that the correct combination of tetraalkylammonium/ILs anions and cations can lead to significant melting point depressions in both species, thus creating new ionic liquid mixtures using an approach akin to that used to form deep eutectic solvents.This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 and LA/P/0006/2020, and CIMO (UIDB/00690/2020 and UIDP/00690/2020) and SusTEC (LA/P/0007/2021), financed by national funds through the FCT/MEC (PIDDAC). L.P.S. acknowledges FCT for her Ph.D. Grant (SFRH/BD/135976/2018).info:eu-repo/semantics/publishedVersio

    Sodium butyrate in growing and fattening diets for early-weaned rabbits

    Full text link
    [EN] To study the effect of adding coated sodium butyrate (SB) to growing-fattening rabbit diets, 2 trials were conducted. In trial 1, 180 rabbits were housed in pairs and fattened from 23 (weaning) to 63 d of age to evaluate their zootechnical performance. Trial 2 involved 30 rabbits, from 23 to 37 d of age and housed individually in digestibility cages, to evaluate digestibility, caecal fermentative activity and morphology of the intestinal mucosa. In both trials rabbits were randomly divided into 2 groups, each receiving one of the following diets: control diet [CTR, 360 g neutral detergent fibre (NDF) and 170 g crude protein (CP)/kg dry matter (DM)] and SB diet. The SB diet, similar to CTR diet, included coated SB at 5 g/kg by replacement of an identical quantity of wheat. In trial 1, after the first 2 wk, the SB content was reduced from 5 to 3 g/kg. In trial 2, faeces were collected over the last 6 d (32-37 d of age), with rabbits being slaughtered at 37 d of age. Gastric and caecal pH were measured and fermentative activity was determined in caecal contents. Three sections of the small intestine were excised from 20 rabbits (10 per treatment) for microscopic examination of intestinal villi and crypts in the proximal region, central region and distal region. In the first 2 wk after weaning, SB rabbits grew 8% less than their counterparts (P=0.002), but had a better feed conversion ratio (1.58 vs. 1.61; P=0.036). During the whole trial 1 period, SB improved feed conversion (P=0.005) and decreased feed intake (104.1 CTR vs. 98.8 g/d SB; P=0.017). No difference was recorded in daily weight gain (42.7 vs. 42.9 g/d). In both diets, the digestibility of DM, organic matter, energy, CP and NDF were similar. In the 3 intestinal regions of rabbits fed SB diet, crypts were deeper (P<0.05). There were no significant differences in villus height and width between treatments. Pectinase activity was higher (P=0.054) with SB diet, but cellulase and xylanase activity remained unaffected by diet. In our experimental conditions, the addition of SB allowed an improvement in feed conversion.Ribeiro, J.; Gaspar, S.; Pinho, M.; Freire, JPB.; Falcão-E-Cunha, L. (2012). Sodium butyrate in growing and fattening diets for early-weaned rabbits. World Rabbit Science. 20(4):199-207. doi:10.4995/wrs.2012.1233SWORD19920720

    Terpenes solubility in water and their environmental distribution

    Get PDF
    Terpenes and terpenoids belong to the largest and most diverse class of natural products. Due to the increasing importance of their applications and the emerging perception of their impact on the environment, the available physico-chemical characterization is insufficient. In this work the water solubility of geraniol, linalool, DL-citronellol, thymol, eugenol, carvacrol and p-cymene, in the temperature range from (298.15 to 323.15) K, and at atmospheric pressure, is studied. Due to the low solubility of these compounds a novel technique was adopted for their measurements and validated using the aqueous solubility data for sparingly soluble aromatic compounds. The thermodynamic properties of solution were derived from the experimental data at infinite dilution. It is shown that the solubility of terpenes in water is an endothermic process confirming the existence of UCST phase diagrams, and only for carvacrol and eugenol is entropically driven. The experimental information is shown in a two-dimensional chemical space diagram providing indications to their probable distribution in the environment once released.Thisworkwas developed in the scope of the project CICECO - Aveiro Institute ofMaterials, POCI-01-0145-FEDER-007679, and Associate Laboratory LSRE-LCM, POCI-01-0145-FEDER-006984, both funded by FEDER under the PT2020 Partnership Agreement - Programa Operacional Competitividade e Internacionalização (POCI) - and by national funds through FCT - Fundação para a Ciência e a Tecnologia. M.A.R.M acknowledges FCT for her PhD grant (SFRH/BD/87084/2012).info:eu-repo/semantics/publishedVersio

    Can cholinium chloride form eutectic solvents with organic chloride-based salts?

    Get PDF
    The high melting point of a large number of organic salts with potential ionic liquid-like properties, hinders their applicability as solvents. Considering the success of cholinium chloride on lowering the melting temperature of several substances and its success on forming deep eutectic solvents, this work studies its mixing with organic chlorides to lower their melting points producing eutectic ionic liquids. The solid-liquid phase diagrams for binary mixtures composed of cholinium chloride and ten organic halides were experimentally measured. Surprisingly, cholinium chloride presented, for all these systems, significant positive deviations from ideal liquid behaviour that restricted its ability to lower the melting points of these mixtures. Only for mixtures with ammonium chloride, tetramethylammonium chloride, bis(2-hydroxyethyl)dimethylammonium chloride or cholinium bromide was cholinium chloride able to significantly lower the melting point of the mixture, but without reaching values close to room temperature (298 K). For a better understanding of the results obtained, the solid-liquid phase diagrams of four alkylammonium chloride-based mixtures were experimentally assessed and used to show that these compounds are better than cholinium chloride at inducing negative deviations from ideality, leading to greater melting point depressions.This work was developed in the scope of the project CICECO e Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (Ref. FCT UID/CTM/50011/2013) and Associate Laboratory LSRELCM, POCI-01-0145-FEDER-006984 (Ref. FCT UID/EQU/50020/2019), and project MultiBiorefinery (POCI-01-0145-FEDER-016403), all financed by national funds through the FCT/MCTES (PIDDAC) and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. FCT is also acknowledged for funding the project DeepBiorefinery (PTDC/AGRTEC/1191/2014). The authors acknowledge the European Research Council under the European Union's Seventh Framework Programme (FP7/ 2007 e 2013)/ERC grant agreement no. 337753. M.A.R.M. acknowledges financial support from NORTE-01-0145-FEDER-000006 - funded by NORTE2020 through PT2020 and ERDF. L.P.S. acknowledges FCT for her PhD grant (SFRH/BD/135976/2018).info:eu-repo/semantics/publishedVersio

    An alternative hybrid lipid nanosystem combining cytotoxic and magnetic properties as a tool to potentiate antitumor effect of 5-fluorouracil

    Get PDF
    The authors acknowledge the support of FCT-Fundação para a Ciência e a Tecnologia, I.P., in the scope of the projects LA/P/0037/ 2020. The authors acknowledge the support of FCT Fundação para a Ciência e a Tecnologia, I.P.Aims: Colorectal cancer is the third most frequent type of cancer and the second leading cause of cancer-related deaths worldwide. The majority of cases are diagnosed at a later stage, leading to the need for more aggressive treatments such as chemotherapy. 5-Fluorouracil (5-FU), known for its high cytotoxic properties has emerged as a chemotherapeutic agent. However, it presents several drawbacks such as lack of specificity and short half-life. To reduce these drawbacks, several strategies have been designed namely chemical modification or association to drug delivery systems. Materials and methods: Current research was focused on the design, physicochemical characterization and in vitro evaluation of a lipid-based system loaded with 5-FU. Furthermore, aiming to maximize preferential targeting and release at tumour sites, a hybrid lipid-based system, combining both therapeutic and magnetic properties was developed and validated. For this purpose, liposomes co-loaded with 5-FU and iron oxide (II, III) nanoparticles were accomplished. Key findings: The characterization of the developed nanoformulation was performed in terms of incorporation parameters, mean size and surface charge. In vitro studies assessed in a murine colon cancer cell line confirmed that 5-FU antiproliferative activity was preserved after incorporation in liposomes. In same model, iron oxide (II, III) nanoparticles did not exhibit cytotoxic properties. Additionally, the presence of these nanoparticles was shown to confer magnetic properties to the liposomes, allowing them to respond to external magnetic fields. Significance: Overall, a lipid nanosystem loading a chemotherapeutic agent displaying magnetic characteristics was successfully designed and physicochemically characterized, for further in vivo applications.publishersversionpublishe
    • …
    corecore