15 research outputs found

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    Vacancy formation on C60/Pt (111)

    No full text

    Ordered vacancy network induced by the growth of epitaxial graphene on Pt(111)

    Get PDF
    We have studied large areas of (3×3)R30° graphene commensurate with a Pt(111) substrate. A combination of experimental techniques with ab initio density functional theory indicates that this structure is related to a reconstruction at the Pt surface, consisting of an ordered vacancy network formed in the outermost Pt layer and a graphene layer covalently bound to the Pt substrate. The formation of this reconstruction is enhanced if low temperatures and polycyclic aromatic hydrocarbons are used as molecular precursors for epitaxial growth of the graphene layersWe acknowledge financial support from MAT2008- 1497 and CSD2007-41 (Spain), and the 7th Framework Program (FP7/2007-2013) (EU). C.G. acknowledge CSIC "JAE-Doc" and P.M. INTA "Rafael Calvo Rodes".Peer reviewe

    Sublattice localized electronic states in atomically resolved graphene-Pt(111) edge-boundaries

    Get PDF
    Trabajo presentado en la conferencia Fuerzas y Túnel (FyT2014), celebrada en San Sebastián del 27 al 29 de agosto de 2014.Understanding the connection of graphene with metal surfaces is a necessary step for developing atomically-precise graphene-based technology. In this work we combine high resolution RT-STM experiments with DFT calculations and non-equilibrium Green's functions method to unveil the atomic structure of a border-like edge between a Pt(111) step and a graphene zigzag edge. We have managed to get atomic resolution not only on both the metal and the graphene but also on the boundary (see Fig. 1). The graphene edges minimize their strain by inducing a 3-fold edge-reconstruction on the metal side. The tendency to form passivated zigzag graphene terminations plays a relevant role in the formation and orientation of the stable Moiré patterns. Our combined approach reveals the interesting electronic properties of this nanoscopic system including the preservation of the G-edge state shifted to energies at about +0.8 eV above Fermi level, highly localized in one of the graphene sublattices and confined to the G-Pt interface. This state spreads out inside the first Pt row resulting in a high quality G-metal electric contact that could be relevant for designing future atomically precise graphene metal leads.N

    Sublattice Localized Electronic States in Atomically Resolved Graphene-Pt(111) Edge-Boundaries

    No full text
    Understanding the connection of graphene with metal surfaces is a necessary step for developing atomically precise graphene-based technology. Combining high-resolution STM experiments and DFT calculations, we have unambiguously unveiled the atomic structure of the boundary between a graphene zigzag edge and a Pt(111) step. The graphene edges minimize their strain by inducing a 3-fold edge-reconstruction on the metal side. We show the existence of an unoccupied electronic state that is mostly localized on the C-edge atoms of one particular graphene sublattice, which could have implications in the design of graphene based devices

    Tailored Formation of N-Doped Nanoarchitectures by Diffusion-Controlled on-Surface (Cyclo)Dehydrogenation of Heteroaromatics

    No full text
    Surface-assisted cyclodehydrogenation and dehydrogenative polymerization of polycyclic (hetero)aromatic hydrocarbons (PAH) are among the most important strategies for bottom-up assembly of new nanostructures from their molecular building blocks. Although diverse compounds have been formed in recent years using this methodology, a limited knowledge on the molecular machinery operating at the nanoscale has prevented a rational control of the reaction outcome. We show that the strength of the PAH-substrate interaction rules the competitive reaction pathways (cyclodehydrogenation versus dehydrogenative polymerization). By controlling the diffusion of N-heteroaromatic precursors, the on-surface dehydrogenation can lead to monomolecular triazafullerenes and diazahexabenzocoronenes (N-doped nanographene), to N-doped oligomeric or polymeric networks, or to carbonaceous monolayers. Governing the on-surface dehydrogenation process is a step forward toward the tailored fabrication of molecular 2D nanoarchitectures distinct from graphene and exhibiting new properties of fundamental and technological interest
    corecore