112 research outputs found

    High functional diversity is related to high nitrogen availability in a deciduous forest - evidence from a functional trait approach

    Get PDF
    The current study tested the assumption that floristic and functional diversity patterns are negatively related to soil nitrogen content. We analyzed 20 plots with soil N-contents ranging from 0.63% to 1.06% in a deciduous forest near Munich (Germany). To describe species adaptation strategies to different nitrogen availabilities, we used a plant functional type (PFT) approach. Each identified PFT represents one realized adaptation strategy to the current environment. These were correlated, next to plant species richness and evenness, to soil nitrogen contents. We found that N-efficient species were typical for low soil nitrogen contents, while N-requiring species occur at high N-contents. In contrast to our initial hypotheses, floristic and functional diversity measures (number of PFTs) were positively related to nitrogen content in the soil. Every functional group has its own adaptation to the prevailing environmental conditions; in consequence, these functional groups can co-exist but do not out-compete one another. The increased number of functional groups at high N-contents leads to increased species richness. Hence, for explaining diversity patterns we need to consider species groups representing different adaptations to the current environmental conditions. Such co-existing ecological strategies may even overcome the importance of competition in their effect on biodiversity

    Melanocytes and Langerhans Cells in Aged Versus Young Skin Before and After Transplantation onto Nude Mice

    Get PDF
    Previous studies have demonstrated decreased numbers of melanocytes and Langerhans cells (LC) in aged skin. In the present study, we employed dopa and indirect immunoperoxidase techniques in epidermal sheets to determine the fate of melanocytes and LC of aged versus young donors after skin transplantations onto nude mice. The detection of positive homologous leucocytic antibody reaction of degeneration (HLA-DR) of LC indicates an age-associated reduction in sun-protected thigh skin in aged versus young subjects (263 ± 63 versus 589.25 ± 142.643, p < 0.001). The mean number of LC four weeks after transplanation remained almost constant. Prior to skin engraftment, a decreased number of melanocytes was found in aged versus young epidermis (160.77 ± 51.7 versus 255.83 ± 81.2, respectively, p < 0.05). A significantly increased number of melanocytes was noted four weeks following engraftment in epidermis from aged (307.44 ± 174, p <0.05) and young human donors (402.16 ± l39,p < 0.02). The marked increase in density of dopa-positive melanocytes following engraftment onto nude mice may indicate the existence of circulating factors in nude mice that perhaps both stimulates and enhances proliferation and activity of these cells

    Towards an applied metaecology

    Get PDF
    The complexity of ecological systems is a major challenge for practitioners and decision-makers who work to avoid, mitigate and manage environmental change. Here, we illustrate how metaecology – the study of spatial interdependencies among ecological systems through fluxes of organisms, energy, and matter – can enhance understanding and improve managing environmental change at multiple spatial scales. We present several case studies illustrating how the framework has leveraged decision-making in conservation, restoration and risk management. Nevertheless, an explicit incorporation of metaecology is still uncommon in the applied ecology literature, and in action guidelines addressing environmental change. This is unfortunate because the many facets of environmental change can be framed as modifying spatial context, connectedness and dominant regulating processes - the defining features of metaecological systems. Narrowing the gap between theory and practice will require incorporating system-specific realism in otherwise predominantly conceptual studies, as well as deliberately studying scenarios of environmental change.We thank FAPESP (grants 2014/10470-7 to AM, 2013/04585-3 to DL, 2013/50424-1 to TS and 2015/18790-3to LS), CNPq (Productivity Fellowships 301656/2011-8 to JAFDF,308205/2014-6 to RP, 306183/2014-5 to PIP and 307689/2014-0 to VDP), the National Science Foundation (DEB 1645137 toJGH), the Natural Sciences and Engineering Council of Canada (SJL,PPN), and the Academy of Finland (grants 257686 and 292765 toMC) for support. This work contributes to the Labex OT-Med (no.ANR-11-LABX-0061), funded by the French government throughthe A*MIDEX project (no. ANR-11-IDEX-0001-02)

    Towards an applied metaecology

    Get PDF
    The complexity of ecological systems is a major challenge for practitioners and decision-makers who work to avoid, mitigate and manage environmental change. Here, we illustrate how metaecology - the study of spatial interdependencies among ecological systems through fluxes of organisms, energy, and matter - can enhance understanding and improve managing environmental change at multiple spatial scales. We present several case studies illustrating how the framework has leveraged decision-making in conservation, restoration and risk management. Nevertheless, an explicit incorporation of metaecology is still uncommon in the applied ecology literature, and in action guidelines addressing environmental change. This is unfortunate because the many facets of environmental change can be framed as modifying spatial context, connectedness and dominant regulating processes - the defining features of metaecological systems. Narrowing the gap between theory and practice will require incorporating system-specific realism in otherwise predominantly conceptual studies, as well as deliberately studying scenarios of environmental change. (C) 2019 Associacao Brasileira de Ciencia Ecologica e Conservacao. Published by Elsevier Editora Ltda.Peer reviewe

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Management of obstructive sleep apnea in Europe – A 10-year follow-up

    Get PDF
    Funding Information: Sleep medicine has been further established and recognized in the past 10 years. This is also shown by the fact that sleep-related diseases may receive a separate chapter in the new ICD-11 (International Classification of Diseases 11th Revision) [11]. However, the initial expansion in sleep laboratories and sleep centers seems to be over, at least in Europe, which stands in contradiction to the growing need. While sleep medical care still seems to be secured by the established structures, the gap between the increasing need and existing structures is still widening [ 12–14]. There is a lack of sleep medicine specialists, new outpatient structures, and new billing models with the sponsoring institutions. Approaches to solve these problems include the establishment and expansion of home sleep apnea testing (HSAT) [15] and telemedicine-based technologies in the diagnosis and treatment of OSA [16,17]. Telemedicine found its way into sleep medicine around 10 years ago [ 18–20]. One of the very first approaches as early as 1994 used a telephone circuit and a computer-controlled support system to improve OSA treatment by improving lifestyle through tele-guidance on nutrition and exercise [21]. Publisher Copyright: © 2022 The Authors Copyright © 2022 Elsevier B.V. All rights reserved.Objective: In 2010, a questionnaire-based study on obstructive sleep apnea (OSA) management in Europe identified differences regarding reimbursement, sleep specialist qualification, and titration procedures. Now, 10 years later, a follow-up study was conducted as part of the ESADA (European Sleep Apnea Database) network to explore the development of OSA management over time. Methods: The 2010 questionnaire including questions on sleep diagnostic, reimbursement, treatment, and certification was updated with questions on telemedicine and distributed to European Sleep Centers to reflect European OSA management practice. Results: 26 countries (36 sleep centers) participated, representing 20 ESADA and 6 non-ESADA countries. All 21 countries from the 2010 survey participated. In 2010, OSA diagnostic procedures were performed mainly by specialized physicians (86%), whereas now mainly by certified sleep specialists and specialized physicians (69%). Treatment and titration procedures are currently quite homogenous, with a strong trend towards more Autotitrating Positive Airway Pressure treatment (in hospital 73%, at home 62%). From 2010 to 2020, home sleep apnea testing use increased (76%–89%) and polysomnography as sole diagnostic procedure decreased (24%–12%). Availability of a sleep specialist qualification increased (52%–65%) as well as the number of certified polysomnography scorers (certified physicians: 36%–79%; certified technicians: 20%–62%). Telemedicine, not surveyed in 2010, is now in 2020 used in diagnostics (8%), treatment (50%), and follow-up (73%). Conclusion: In the past decade, formal qualification of sleep center personnel increased, OSA diagnostic and treatment procedures shifted towards a more automatic approach, and telemedicine became more prominent.Peer reviewe

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore