392 research outputs found

    Consecutive wildfires affect stream biota in cold- and warmwater dryland river networks

    Get PDF
    Citation: Whitney, J. E., Gido, K. B., Pilger, T. J., Propst, D. L., & Turner, T. F. (2015). Consecutive wildfires affect stream biota in cold- and warmwater dryland river networks. Freshwater Science, 34(4), 1510-1526. doi:10.1086/683391Climate change and fire suppression have altered fire regimes globally, leading to larger, more frequent, and more severe wildfires. Responses of coldwater stream biota to single wildfires are well studied, but measured responses to consecutive wildfires in warmwater systems that often include mixed assemblages of native and nonnative taxa are lacking. We quantified changes in physical habitat, resource availability, and biomass of cold- and warmwater oligochaetes, insects, crayfish, fishes, and tadpoles following consecutive megafires (covering >100 km(2)) in the upper Gila River, New Mexico, USA. We were particularly interested in comparing responses of native and nonnative fishes that might have evolved under different disturbance regimes. Changes in habitat and resource availability were related to cumulative fire effects, fire size, and postfire precipitation. The 2nd of 2 consecutive wildfires in the basin was larger and, coupled with moderate postfire discharge, resulted in increased siltation and decreased algal biomass. Several insect taxa responded to these fires with reduced biomass, whereas oligochaete biomass was unaffected. Biomass of 6 of 7 native fish species decreased after the fires, and decreases were associated with site proximity to fire. Nonnative fish decreases after fire were most pronounced for coldwater salmonids, and warmwater nonnative fishes exhibited limited responses. All crayfish and tadpoles collected were nonnative and were unresponsive to fire disturbance. More pronounced responses of native insects and fishes to fires indicate that increasing fire size and frequency threatens the persistence of native fauna and suggests that management activities promoting ecosystem resilience might help ameliorate wildfire effects

    Using dense seismo-acoustic network to provide timely warning of the 2019 paroxysmal Stromboli eruptions

    Get PDF
    Stromboli Volcano is well known for its persistent explosive activity. On July 3rd and August 28th 2019, two paroxysmal explosions occurred, generating an eruptive column that quickly rose up to 5 km above sea level. Both events were detected by advanced local monitoring networks operated by Istituto Nazionale di Geofisica e Vulcanologia (INGV) and Laboratorio di Geofisica Sperimentale of the University of Firenze (LGS-UNIFI). Signals were also recorded by the Italian national seismic network at a range of hundreds of kilometres and by infrasonic arrays up to distances of 3700 km. Using state-of-the-art propagation modeling, we identify the various seismic and infrasound phases that are used for precise timing of the eruptions. We highlight the advantage of dense regional seismo-acoustic networks to enhance volcanic signal detection in poorly monitored regions, to provide timely warning of eruptions and reliable source amplitude estimate to Volcanic Ash Advisory Centres (VAAC)

    Seismic investigations of the O'Higgins Seamount Group and Juan Fernández Ridge: aseismic ridge emplacement and lithosphere hydration

    Get PDF
    The O'Higgins Seamount Group is a cluster of volcanic domes located 120 km west of the central Chilean Trench on the crest of the Juan Fernández Ridge. This aseismic hot spot track is subducting under South America triggering a belt of intraslab earthquake hypocenters extending about 700 km inland. The Juan Fernández Ridge marks the southern boundary of a shallow subduction segment. Subduction of oceanic basement relief has been suggested as a cause for the “flat” slab segments characterizing the Andean trench system. The Juan Fernández Ridge, however, shows only moderate crustal thickening, inadequate to cause significant buoyancy. In 2001, wide-angle seismic data were collected along two perpendicular profiles crossing the O'Higgins Group. We present tomographic images of the volcanic edifices and adjacent outer rise-trench environment, which indicate a magmatic origin of the seamounts dominated by extrusive processes. High-resolution bathymetric data yield a detailed image of a network of syngenetic structures reactivated in the outer rise setting. A pervasive fault pattern restricted to the hot spot modified lithosphere coincides with anomalous low upper mantle velocities gained from a tomographic inversion of seismic mantle phases. Reduced uppermost mantle velocities are solely found underneath the Juan Fernández Ridge and may indicate mineral alterations. Enhanced buoyancy due to crustal and upper mantle hydration may contribute an additional mechanism for shallow subduction, which prevails to the north after the southward migration of the Juan Fernández Ridge

    EXPERIMENT OPERATIONS PLAN FOR A LOSS-OF-COOLANT ACCIDENT SIMULATION IN THE NATIONAL RESEARCH UNIVERSAL REACTOR

    Get PDF
    Pressurized water reactor loss-of-coolant accident phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship between the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. This document contains both experiment proposal and assembly proposal information. The intent of this document is to supply information required by the Chalk River Nuclear Laboratories (CRNL), and to identify the planned procedures and data that will be used both to establish readiness to proceed from one test phase to the next and to operate the experiment. Operating control settings and limits are provided for both experimenter systems and CRNL systems. A hazards review summarizes safety issues that have been addressed during the development of the experiment plan
    corecore