9 research outputs found

    Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain

    Get PDF
    Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly

    Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1

    Get PDF
    Astrocytes control excitatory synaptogenesis by secreting thrombospondins (TSPs), which function via their neuronal receptor, the calcium channel subunit α2δ-1. α2δ-1 is a drug target for epilepsy and neuropathic pain; thus the TSP–α2δ-1 interaction is implicated in both synaptic development and disease pathogenesis. However, the mechanism by which this interaction promotes synaptogenesis and the requirement for α2δ-1 for connectivity of the developing mammalian brain are unknown. In this study, we show that global or cell-specific loss of α2δ-1 yields profound deficits in excitatory synapse numbers, ultrastructure, and activity and severely stunts spinogenesis in the mouse cortex. Postsynaptic but not presynaptic α2δ-1 is required and sufficient for TSP-induced synaptogenesis in vitro and spine formation in vivo, but an α2δ-1 mutant linked to autism cannot rescue these synaptogenesis defects. Finally, we reveal that TSP–α2δ-1 interactions control synaptogenesis postsynaptically via Rac1, suggesting potential molecular mechanisms that underlie both synaptic development and pathology

    Rôle des régulateurs de la phase G1 du cycle cellulaire dans la corticogenèse

    No full text
    Les mécanismes développementaux qui spécifient le nombre et le phénotype laminaire des neurones du cortex cérébral jouent un rôle essentiel dans l’établissement de la cytoarchitecture corticale. Le nombre de neurones dans chaque couche d'une aire donnée est déterminé par le taux de production neuronale, qui dépend étroitement de l'équilibre entre les divisions prolifératives et différenciatives. Des observations clés suggèrent que la durée de la phase G1 (TG1) ferait partie intégrante d'un mécanisme cellulaire régulant le mode de division des précurseurs du cortex. Nous avons testé cette hypothèse par l'accélération expérimentale de la progression dans la phase G1 de précurseurs corticaux de souris in vivo, via la surexpression des cyclines E1 et D1. A E15, la réduction de TG1 promeut la rentrée dans le cycle cellulaire aux dépens de la différenciation neuronale, résultant en une modification de la cytoarchitecture du cortex adulte. Des données de modélisation confirment que les effets induits par la réduction de TG1 sont médiés par des changements du mode de division. Les effets de la surexpression des cyclines E1 et D2 à E13 sont plus modérés qu'à E15, indiquant des différences intrinsèques entre les précurseurs corticaux précoces et tardifs. La mesure des phases du cycle cellulaire des populations de précurseurs corticaux à l’aide de différentes techniques révèle un niveau important d’hétérogénéité et souligne la nécessité de prendre en compte la diversité des précurseurs co‐existant dans les zones germinales du télencéphale.In the cerebral cortex, area‐specific differences in neuron number and phenotype are distinguishing features both within and across species. The developmental mechanisms that specify the number of neurons and their laminar fate are instrumental in specifying cortical cytoarchitecture. Neuron number in layers and areas correlate with changes in the rate of neuron production, largely determined by the balance between proliferative and differentiative divisions in cortical precursors. Key observations suggest a concerted regulation between the duration of the G1 phase (TG1) and mode of division and have led to the hypothesis that TG1 could be an integral part of a cellular mechanism regulating the mode of division of cortical precursors. To test this hypothesis we experimentally accelerated TG1 in mouse cortical precursors in vivo, via the forced expression of cyclinE1 and cyclinD1. At E15, TG1 reduction promoted cell‐cycle re‐entry at the expense of differentiation and led to cytoarchitectural modifications. Modeling confirms that the TG1‐induced changes in neuron production and laminar fate are mediated via the changes in the mode of division. Forced expression of G1 cyclins was also applied to early cortical precursors. The effects of cyclinD1 and cyclinE1 up‐regulation at E13 were milder than those observed at E15, pointing to intrinsic differences between early and late cortical precursors. The used of various techniques to measure cell‐cycle kinetics in distinct precursor populations underlined the necessity of taking the full diversity of neural precursors co‐existing in the GZ of the telencephalon into account when performing cellcycle kinetics analysis

    Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1

    No full text
    Astrocytes control excitatory synaptogenesis by secreting thrombospondins (TSPs), which function via their neuronal receptor, the calcium channel subunit α2δ-1. α2δ-1 is a drug target for epilepsy and neuropathic pain; thus the TSP-α2δ-1 interaction is implicated in both synaptic development and disease pathogenesis. However, the mechanism by which this interaction promotes synaptogenesis and the requirement for α2δ-1 for connectivity of the developing mammalian brain are unknown. In this study, we show that global or cell-specific loss of α2δ-1 yields profound deficits in excitatory synapse numbers, ultrastructure, and activity and severely stunts spinogenesis in the mouse cortex. Postsynaptic but not presynaptic α2δ-1 is required and sufficient for TSP-induced synaptogenesis in vitro and spine formation in vivo, but an α2δ-1 mutant linked to autism cannot rescue these synaptogenesis defects. Finally, we reveal that TSP-α2δ-1 interactions control synaptogenesis postsynaptically via Rac1, suggesting potential molecular mechanisms that underlie both synaptic development and pathology

    Astrocytes Assemble Thalamocortical Synapses by Bridging NRX1α and NL1 via Hevin

    No full text
    Proper establishment of synapses is critical for constructing functional circuits. Interactions between presynaptic neurexins and postsynaptic neuroligins coordinate the formation of synaptic adhesions. An isoform code determines the direct interactions of neurexins and neuroligins across the synapse. However, whether extracellular linker proteins can expand such a code is unknown. Using a combination of in vitro and in vivo approaches, we found that hevin, an astrocyte-secreted synaptogenic protein, assembles glutamatergic synapses by bridging neurexin-1alpha and neuroligin-1B, two isoforms that do not interact with each other. Bridging of neurexin-1alpha and neuroligin-1B via hevin is critical for the formation and plasticity of thalamocortical connections in the developing visual cortex. These results show that astrocytes promote the formation of synapses by modulating neurexin/neuroligin adhesions through hevin secretion. Our findings also provide an important mechanistic insight into how mutations in these genes may lead to circuit dysfunction in diseases such as autism

    Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1

    Get PDF
    Astrocytes control excitatory synaptogenesis by secreting thrombospondins (TSPs), which function via their neuronal receptor, the calcium channel subunit α2δ-1. α2δ-1 is a drug target for epilepsy and neuropathic pain; thus the TSP-α2δ-1 interaction is implicated in both synaptic development and disease pathogenesis. However, the mechanism by which this interaction promotes synaptogenesis and the requirement for α2δ-1 for connectivity of the developing mammalian brain are unknown. In this study, we show that global or cell-specific loss of α2δ-1 yields profound deficits in excitatory synapse numbers, ultrastructure, and activity and severely stunts spinogenesis in the mouse cortex. Postsynaptic but not presynaptic α2δ-1 is required and sufficient for TSP-induced synaptogenesis in vitro and spine formation in vivo, but an α2δ-1 mutant linked to autism cannot rescue these synaptogenesis defects. Finally, we reveal that TSP-α2δ-1 interactions control synaptogenesis postsynaptically via Rac1, suggesting potential molecular mechanisms that underlie both synaptic development and pathology
    corecore